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Overview 
  
 

1. What range of εeff , µeff parameter space 
is accessible to simple metamaterial 
geometries? `` 

2. A systematic & mathematically rigorous    
multi-scale ``bottom up’’ methodology for 
linking subwavelength metamaterial 
geometry to effective parameters εeff , 
µeff ? 

 



Overview & Perspective 
 

3. Goal: optimal beam-wave interaction.  
Design metallic sub-wavelength structures 
that mimic the response of a dielectric for 
generating slow electromagnetic waves.   
D. Shiffler, J. Luginsland, D.M. French, 
J. Watrous, IEEE Trans. Plasma Sci. 2010. 
 
4. Objective.  
Control beam wave interaction frequencies 
by controlling intrinsic electrostatic 
resonances of metallic sub-wavelength 
structure. 
 



 Metamaterials & novel effective properties  

• The first double negative materials made from metallic resonators and 
   metallic posts. Smith et. al. Phys Rev. (2000). Operational at  
   microwave frequencies. 
•  Several subsequent novel designs operational up to infrared. 
  1.Dolling, G., Enrich, C., Wegener, M., Soukoulis, C. M., Linden, S.: 
     Opt. Lett. Vol 31, 1800–1802(2006) 
  2. Huangfu, J., Ran, L., Chen, H., Zhang, X., Chen, K., Grzegorczyk,  
      T. M., Kong, J., A.: Appl. Phys. Lett. Vol 84, 1537(2004) 
•  Metamaterials proposed for Higer frequencies 
    1. Plasmonic nano particles: 
 A. Alù, A. Salandrino, and N. Engheta, Opt. Expr. 14, 1557 (2006).  
    2. Optically thin metal films: 
 V. Lomakin†, Y. Fainman, Y. Urzhumov‡, & G. Shvets, Opt Expr.  
 14 11164 (2006) 
    3. Large permittivity dielectric inclusions 
K.C. Huang, M.L. Povinelli, & J.D. Joannopoulos, J. D. 2004  
Appl. Phys.Lett. 85, 543. 
 
 

 
  

 
 

 



Macroscopic properties µeff , εeff  
from sub-wavelength structure 

Objectives 1 and 2: recover an explicit multi-scale link between macroscopic  
properties  µeff , εeff  and geometry of sub-wavelength structures 

 and understand range of properties accessible by simple 
sub-wavelength geometries. 

 
With explicit relation connecting microstructure and properties of an effective  
medium can systematically design sub-wavelength geometries 
 

 µeff , εeff 
Map sub-wavelength structure 

to 
Dispersion relations  
involving effective properties 



 Electromagnetic Waves in Metamaterials  
 

Sub-wavelength power series: a bottom up approach 

Effective properties appear as leading order terms  
In an explicit sub-wavelength power series for dispersion relation 
and power series solution to  Maxwell Equations  
 
Expansion parameter is length scale of structure 
divided by wavelength. (Sub-wavelength expansion). 
 
Higher order terms provide explicit corrections to 
the effective theory.  
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k=2π/λ 



 Sub-wavelength power series 
Negative index/ double negative properties from nonmagnetic 

materials: 
1. Y. Chen & R. Lipton, Double Negative Dispersion Relations from 
Coated Plasmonic Rods. (Multiscale Modeling and Simulation) 
under revision, arXiv:1202.0602v1 [math.AP] 3 Feb 2012. 
2. Y. Chen & R. Lipton, Resonance and double negative behavior 
in metamaterials. (Submitted) arXiv:1111.3586v1 [math.AP] 15 Nov 
2011 
3. Y. Chen & R. Lipton Tunable double negative band structure 
from non-magnetic coated rods. New Journal of Physics Vol. 12 
(2010) 083010 

Negative magnetic permeability from non magnetic materials: 
1. S. Fortes, R. Lipton, S. Shipman ``Power series for high contrast 
sub wavelength media.’’ Proc. R. Soc. London Series A2010 466: 
1993-2022 
 
2.  S. Fortes, R. Lipton, S. Shipman``Convergent power series for 
fields in positive or negative high-contrast periodic media.’’ 
Communications in PDE 36, 2011, pp.1016--1043 
 



 Examples of simple sub-wavelength materials 
with exotic EM properties 

! eff

µ eff Dielectric loaded 
waveguide 

Plasma loaded 
waveguide 

Veselago Medium Magnetic material loaded 
waveguide 

We provide examples of sub-wavelength geometries that  
capture the behavior in all four quadrants depending  
upon frequency of operation 



Microstructured materials made from metallic and 
high dielectric rods 
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Periodic array of metal coated dielectric rods 
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x1 x2 

d 

Chen, Lipton, New Journal of 
Physics Vol. 12 (2010) 083010 



Determine Waves Supported by the 
Metamaterial 

d 

κ 

λ 

k=2π/λ 

Sub-wavelength power series solution for the H field            
H= H3(x)ei(kκ·x-ωt) 

x2 

x1 



 Frequency dependent sub-wavelength local 
properties 

To fix ideas consider metal coated rods 

• Magnetic permeability µ=1 in host, rod core & rod coating 
• Crystal period is d. 
• Metallic coating, Drude model:  εP=ε(ω)=(1-(ωp/ω)2)  
• Host permittivity εH=1. 
• Rod core permittivity  εR=εr/d2 . 
• The wave number is k=2π/λ. 
• Investigate wave propagation when  

                             2πd/λ=kd=ƞ<1  
 
        Find convergent power series solution in kd=η.    



Sub-wavelength power series solution 

H3 = u0 !0 (x / d)+ (dk) j i j! j (x / d)j=1

!
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! = ("0 (k,
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Power series for the H field 

Power series for the dispersion relation 

Leading order term.   Effects of spatial dispersion 



The first order term in the dispersion relation  

ξ0 is a root of: 

Leading order dispersion relation for 
the metamaterial  

µ eff (!0 )!0 = k
2" eff (!0 )

!1 !# •
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The generic effective dielectric constant and magnetic 
permeability exhibit multiple surface modes! 
These explicit formulas emerge naturally via the power 
series ``bottom up’’ approach and modes are 
controlled by the shape of the metallc inclusions and 
their relative positions  
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Formulas emerge from asymptotic analysis, 
They are not postulated from the top down 

Natural Emergence of Effective Properties 



The surface modes are determined 
by two distinct spectral problems intrinsic 

to the geometry & independent of materials! 
Effective magnetic permeability: 
  
The poles µn and weights <ϕn> are the Dirichlet 
Eigenvalues µn and averages of the Dirichlet eigenfunctions ϕn for 
associated with the core. 

Effective Dielectric Constant: 
The numbers λn and weights αn are the 
Eigenvalues λn and averages of the eigenfunctions ψn  for an  
electrostatic resonance problem: 
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A general theory for effective metamaterial properties  

Generalization of Bergman-Milton Electrostatic resonances to multiple phases 



Intervals of double negative and   
double positive effective properties 

µeff

ξ0µ1 µ2 µ3

· · ·
a′b′ a′′b′′

Figure: the relation between µeff and ξ0

replacements

ε−1eff κ̂ · κ̂
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· · ·
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Figure: the relation between ε−1eff κ̂ · κ̂ and ξ0
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Intervals of single negative and   
single positive effective properties 
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Example: Electrostatic Resonance Problem 
 for Coated Cylinders 

The electrostatic resonances λh are found by solving the following
problem for the potential u inside a unit cell, i.e., d = 1:

{

∆u = 0 in H,

∆u = 0 in P,
(33)

with the boundary conditions






















u|− = u|− on ∂P,
∂r u|r=a = 0 on ∂R,
λ[∂r u]−+ = −1

2(∂r u− + ∂r u+) on ∂P,
u is Y -periodic .

(34)
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Electrostatic Resonances & Dirichlet Spectra 
Tools for designing leading order dispersion relation 

The first 10 electrostatic resonances λn explicitly control 
the first 10 surface modes for the metamaterial  

b 

a 

Electro static resonances 
3.508x10-1 
1.537x10-2 
9.755x10-4 
6.103x10-5 
3.814x10-6 
-2.028x10-3 
-5.533x10-3 
-1.501x10-2 
-4.453x10-2 
-4.497x10-2 



Electrostatic Resonances 

(a) (b)

Figure: (a) the solution corresponding to the eigenvalue λ = 3.5080× 10−1;
(b) the solution corresponding to the eigenvalue λ = 1.5379× 10−2.
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Comparison of leading order dispersion 
relations with direct numerical simulation I 

The following figures show the exact numerical solutions via COMSOL
and how they compare to the leading order dispersion relation.
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Figure: the case of a = 0.2d , b = 0.4d and εR = 285.
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Comparison of leading order dispersion 
relations with direct numerical simulation II 
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Design of Microstructure for Double Negative 
Properties via Electrostatic & Dirichlet resnonances 
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To add the additional effects of damping: just change frequency 
dependence of metallic phase to include damping  – the 

geometrically intrinsic  electrostatic resonances stay the same! 

!p ! ! p( ) =1!
!0 ! p( )

2

! ! p( )
2
! i !c ! p( ) ! ! p( )

!c ! p = 0.01



Dispersion curves 

dk = dkr + idkiComplex wave number 



 
J.B. Pendry, A.J. Holden, W.J.Stewart, & I. Youngs, 
Phys. Rev. Lett. (76)25 4773 (1996). Use of structural 
geometry to generate low frequency plasmons. 
 
Apply this phenomena to design slow wave structures 
for amplifiers ``A Cerenkov-like Maser Based on a 
Metamaterial Structure,’’ D.Shiffler, J. Luginsland, D.M. 
French, & J. Watrous, IEEE Transactions on Plasma 
Science (38)6 1462 (2010). 

Equivalently (4.3) and (4.4) show

u(r, θ) ≈

{

a−2r cos θ + r−1 cos θ in P,
(

a2b−2−2λ
1−2λ

)

a−2r cos θ +
(

a−2b2−2λ
1−2λ

)

r−1 cos θ in H.
(5.10)

The the solution u corresponding to the first two eigenvalues with a = 0.2 and b = 0.4 are
illustrated in Figure 4.

(a) (b)

Figure 4: (a) the solution corresponding to the eigenvalue λ = 3.5080 × 10−1; (b) the solution
corresponding to the eigenvalue λ = 1.5379× 10−2.

6 Numerical calculation of the dispersion relation and com-

parison with power series

In this section we verify that the leading order dispersion relation expressed in terms of effective
properties is a good predictor of the dispersive behavior of the metamaterial for periods with finite
size d > 0. The usefulness of the effective properties for predicting metamaterial behavior away from
the homogenization limit can be explicitly seen from power series formula for the dispersion relation.
To proceed we fix d = c/ωp and the dimensionless ratio ρ = d/

√
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frequency dependent effective magnetic permeability µeff and effective dielectric permittivity εeff
are written as
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In these variables the leading order dispersion relation is given by

(dk)2 = (
ω0

ωp
)2n2

eff , (6.3)
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Dielectric behavior from sub-wavelength metallic structure 
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Custom design of TWT from subwavelength metal dielectric structure in a 
circular waveguide  through:  
 
(1) Geometric tailoring of intrinsic electrostatic resonances of the metallic 
structure. - This controls beam wave interaction frequencies. 
(2) Provide a capability for systematic design of TWT for maximum gain 
over maximum band width. 
(3) Corrections  to dispersion relation associated with spatial dispersion  
can be  computed explicitly with no phenomenology. 

c
! eff

VBeam!

k

Control beam wave interaction frequencies by 
tailoring electrostatic resonances of metal structure 



  
Goal: Engineer shape so surface modes far below ωp /√2.  
Method: engineer electrostatic resonances 

Equivalently (4.3) and (4.4) show
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The the solution u corresponding to the first two eigenvalues with a = 0.2 and b = 0.4 are
illustrated in Figure 4.
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Figure 4: (a) the solution corresponding to the eigenvalue λ = 3.5080 × 10−1; (b) the solution
corresponding to the eigenvalue λ = 1.5379× 10−2.
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Dielectric behavior from sub-wavelength metallic structure 
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Chen, Lipton (Multiscale Modeling and Simulation) under 
revision, arXiv:1202.0602v1 [math.AP] 3 Feb 2012. 



Controlling λh provides control of surface modes and allows for 
the systematic design 

of effective dielectric functions for generation slow 
electromagnetic waves 
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Development of a systematic theory & 
methodology for design of sub-wavelength 
metallic structures for dielectric response 
for generating slow electromagnetic waves. 
 
Method will address the control of surface 
modes through the tuning of sub-wave 
length geometry for control of electrostatic 
resonances. Provides a means for 
engineering dispersion relations for wave 
guides with slow waves. 
 
 
 
 

Plans 



  
The associated analysis of bandwidth for 
short TWT’s loaded with metamaterial will 
be carried out following the Methods of 
Schachter, Nation and Kerslick J. Appl. 
Phys. 68 (11) 1990, 5874.  
 
The results will be compared with direct 
numerical simulation for TWT’s  loaded with 
metallic sub-wavelength structures. 
 

Plans 


