MIT Research

Innovative Use of Metamaterials in Confining, Controlling, and Radiating Intense Microwave Pulses

Michael Shapiro and Richard Temkin MIT Dept. of Physics MIT Plasma Science and Fusion Center

MURI Kickoff at Univ. New Mexico August 21, 2012

Outline

- MIT HPM Research Capabilities
- MTM HPM Amplifier Design
- S-Band MTM Amplifier Experiment First Design
- Summary

MIT Accelerator and HPM Lab

PliT

MIT Accelerator F	Parameters
Klystron Power	25 MW
RF Frequency	17.14 GHz
Linac Energy	25 MeV
Linac Length	0.5m, 94
	cells
Test Stand Power	4 MW

700 kV Modulator

Modulator V, I Waveforms

MIT Modulator Parameters		
Modulator Voltage	700 kV	
Modulator Pulsed Power	500 MW	
Beam Current	780 A	
Modulator Pulse Length	1.0 ms Flat- top	
Klystron Power	25 MW	

Features of Long Pulses

- High Energy
- Equilibrium
- For Q~5000 and ω ~ 3 GHz, Q/ ω ~300 ns

Previous MIT HPM Experiments

- Injection locked 3.3 GHz Magnetron, 30 MW, 400 ns
- Cyclotron Autoresonance Maser (CARM) oscillator, 1.9 MW, 28 GHz in 1 ms pulses; 450 kV, 80 A, 5.2% efficiency
- Free Electron Laser Oscillator, 1 MW, 27 GHz in 1 ms pulses at 10% efficiency; 320 kV and 30A
- Haimson Research Corp. 17.1 GHz Klystron; 525 kV, 100A
 - First version: 25 MW with 50 dB of gain
 - Second version: 25 MW with 71 dB of gain

SLAC 5045 Electron Gun

• SLAC 5045 Klystron Gun built for MIT

- 350 kV
- 414 A
- Perveance 2 µP
- E Beam Power 145 MW
- Microwave P = 65 MW

Magnetic Field Profile ~ 1.4 kG

SLAC 5045 Klystron

Haimson Research Choppertron

• Test of Choppertron

Choppertron Schematic

Choppertron Gun 500 kV, 80A Electron Beam diameter 4 mm

MIT RF Breakdown Research at 11.4 GHz

- Pli7
- RF breakdown could be a major issue for MTM structures
- Standing wave Photonic Bandgap structures with half field in each of 2 coupling cells and full field in test cell
 - Designed at MIT, built and tested at SLAC

Metallic PBG Structures

- 3.6 * 10^-3 /pulse/m @128 MV/m
- Surface field is about 250 MV/m
- Breakdown testing will begin at MIT at 17.1 GHz in 2012

Gyrotron and TWT Research Lab

• Two experiments operate from a single power supply

1.5 MW 110 GHz Gyrotron 96 kV, 42 A Plii

94 GHz TWT Experimental Design

Plii

Cold Test Laboratory

 Vector Network Analyzer for frequencies of 10 MHz to 325 GHz

Outline

- MIT HPM Research Capabilities
- MTM HPM Amplifier Design
- S-Band MTM Amplifier Experiment First Design
- Summary

- MTM amplifier will be based on an electron beam from a Pierce gun with solenoidal magnet focusing and transport through a MTM structure
- Design procedure will be similar to conventional TWT designs
 - First: design an electron beam system and magnet
 - Second: design the amplifier circuit, estimate linear gain
 - Third: calculate the saturated gain using CST particle studio
- We have a preliminary (first) MTM structure design
 - We would like to try other designs suggested by other team members

94 GHz Electron Gun Design

CST and Latte Simulations

- CST Particle Studio (3D PIC code) simulations with 86 cavity (6.88 cm long) structure at 94GHz
- Results show 32 dB gain with 300 W peak output power and 200 MHz bandwidth
- 3D CST results agree with 1D LMSuite Latte Simulations with 4 dB/cm loss and 3 Ω coupling impedance

Negative Index Complementary Metamaterial

Extracted effective parameters

COMSOL simulation

Beam-NIM instability

M. A. Shapiro et al., "Active Negative-index metamaterial powered by an electron beam" to be published in PRB 2012

Outline

- MIT HPM Research Capabilities
- MTM HPM Amplifier Design
- S-Band MTM Amplifier Experiment First Design
- Summary

S-Band MTM Amplifier Experiment

- S-Band (2 -4 GHz) amplifier
 - Wavelength of 10 cm
 - Structure size and breakdown field more manageable
- Input power ~ 100 kW; about 10 to 100 MW output, so we will need 20 to 30 dB of saturated gain
- Plan A is to use SLAC 5045 electron gun: 350 kV, 414A
 - Beam size about 24 mm in diameter, equal to about 1/4
 - Magnetic field requirement is 1.4 kG over 0.75 m length
- Plan B is to use Haimson Research Choppertron gun: 500 kV, 80 A, 4 mm beam diameter
 - Already mounted to MIT modulator tank

Schematic of MTM Amplifier

- Schematic is based on previous implementation of SLAC 5045 electron gun on MIT modulator tank
- SLAC gun shown on right for comparison

Acknowledgements

- Research supported by:
 - Air Force Office of Scientific Research
- MIT Research Group:

Faculty and Staff
William Guss
Ivan Mastovsky
Michael Shapiro
Richard Temkin
Paul Thomas
Paul Woskov

<u>Postdocs:</u> Min Hu Sudheer Jawla

Grad Students

Sergey Arsenyev Jason Hummelt Elizabeth Kowalski Xueying Lu Brian Munroe Emilio Nanni Samuel Schaub Sasha Soane David Tax Jiexi Zhang

Шіт