Albuquerque, NM, August 21, 2012

EXPLORING DEGENERATE BAND EDGE MODE IN HPM TRAVELING TUBE

Alex Figotin and Filippo Capolino

University of California at Irvine

Supported by AFOSR

MAIN OBJECTIVES FOR THE FIRST YEAR

- Explore degenerate band edge (DBE) modes for multidimensional transmission lines and waveguides.
- DBE mode with alternating axial electric field .
- Transmission line model of TWT that can account for significant feature of the amplification.
- Suggested design of realistic waveguide for HPM TWT supporting DBE.

TWT with super amplification via DBE Mode

TWT with super amplification via the DBE mode.
A, B, and C are three different waveguide sections with distinct transverse anisotropy.

FROZEN MODE REGIMES

Stationary points of the dispersion relation. Slow waves.

$$
v_{g}=\frac{\partial \omega}{\partial k}=0, \quad \text { at } \omega=\omega_{s}=\omega\left(k_{s}\right) .
$$

1. Dramatic increase in density of modes.
2. Qualitative changes in the eigenmode structure (can lead to the frozen mode regime).

Examples of stationary points:

- Regular band edge (RBE):

$$
\omega-\omega_{g} \propto\left(k-k_{g}\right)^{2}, \quad v_{g} \propto\left(k-k_{g}\right) \propto\left(\omega-\omega_{g}\right)^{1 / 2} .
$$

- Stationary inflection point (SIP): $\omega-\omega_{0} \propto\left(k-k_{0}\right)^{3}, \quad v_{g} \propto\left(k-k_{0}\right)^{2} \propto\left(\omega-\omega_{0}\right)^{2 / 3}$.
- Degenerate band edge (DBE): $\quad \omega-\omega_{d} \propto\left(k-k_{d}\right)^{4}, \quad v_{g} \propto\left(k-k_{d}\right)^{3} \propto\left(\omega-\omega_{d}\right)^{3 / 4}$.

Each stationary point is associated with slow wave, but there are some fundamental differences between these three cases.

BASIC CHARACTERISTIC OF THE FROZEN MODE REGIME

- The frozen mode regime is not a conventional resonance - it is not particularly sensitive to the shape and dimensions of the structure.
- The frozen mode regime is much more robust than a common resonance.
- The frozen mode regime persists even for relatively short pulses (bandwidth advantage).

SLOW WAVE RESONANCE

Slow-wave phenomena in bounded photonic crystals.

Cavity Resonator vs. Slow Wave Resonator
 Examples of Plane-Parallel Open Resonators

Simplest uniform resonance cavity with metallic reflectors

Single mode photonic cavity

Uniform resonance cavity with photonic reflectors (DBR)

$$
W(z)=\frac{1}{8 \pi}\left[\varepsilon E^{2}(z)+\mu H^{2}(z)\right]
$$

Poor confinement

Better confinement

Best confinement

Transmission band edge resonances near a RBE
a) $N=16$

a) $N=16, s=1$

b) $N=32$

b) $N=32, s=1$

Transmission dispersion of periodic stacks with different N.
ω_{g} - the RBE frequency

Smoothed energy density distribution at frequency of the first resonance
$\max (W) \propto W_{I} N^{2}$

a) $N=16, s=1$

b) $N=32$

b) $N=32, s=1$

Transmission dispersion of periodic stacks with different N.
ω_{d} - the DBE frequency

Smoothed Field intensity distribution at frequency of first transmission resonance

$$
\max (W) \propto W_{I} N^{4}
$$

Summary: RBE resonator vs. DBE resonator

Regular Band Edge: $\omega \approx \omega_{g}-\frac{a_{2}}{2}\left(k-k_{g}\right)^{2}$:

$$
\max (W) \propto W_{I}\left(\frac{N}{m}\right)^{2}
$$

Degenerate Band Edge: $\omega \approx \omega_{d}-\frac{a_{4}}{4}\left(k-k_{d}\right)^{4}$:

$$
\max (W) \propto W_{I}\left(\frac{N}{m}\right)^{4}
$$

Example: Slow-wave cavity resonance in periodic stacks composed of different number N of unit cells.

Energy density distribution inside photonic crystal at frequency of slow wave resonance
Regular Band Edge: $\quad \max (W) \propto W_{I} N^{2}$
Degenerate Band Edge: $\max (W) \propto W_{I} N^{4}$
A DBE slow-wave resonator composed of N layers performs similar to a standard RBE resonator composed of N^{2} layers, which implies a huge size reduction.

Floquet expansion of fields

- The electric field in periodic structures (periodic except for an inter-element phase shift):
$\mathbf{E}\left(\mathbf{r}+d \hat{\mathbf{z}}, k_{z}\right)=\mathbf{E}\left(\mathbf{r}, k_{z}\right) e^{i k_{z} d}$

- A mode is expressed in term of Fourier series expansion, and thus represented as the superposition of Floquet spatial harmonics
$\mathbf{E}^{\text {mode }}\left(\mathbf{r}, k_{z}\right)=\sum_{p=-\infty}^{\infty} e^{i k_{z, p^{z}}} \mathbf{e}_{p}^{\text {mode }}\left(x, y, k_{z}\right)$

$$
\begin{aligned}
& k_{z, p}=k_{z}+2 \pi p / d \\
& k_{z, p}=\beta_{z, p}+i \alpha_{z}
\end{aligned}
$$

Physical modes for coupling

- Forward/Backward

$$
k_{z, p}=\beta_{z, p}+i \alpha_{z} \Rightarrow\left\{\begin{array}{c}
\beta_{z, p} \alpha_{z}>0 \quad \text { Forward waves } \\
\beta_{z, p} \alpha_{z}<0 \quad \text { Backward waves }
\end{array}\right.
$$

- Slow/Fast (coupling with field produced by electron bunches)

Slow Mode: all its Floquet wavenumbers are outside the "visible" region, or

$$
\left|\beta_{z, p}\right|>k
$$

Fast Mode: mode has at least one Floquet wavenumber within the "visible" region, or $\left|\beta_{z, p}\right|<k$

Physical waves in open periodic structures

	Forward Wave $\beta_{z, p} \alpha_{z}>0$	Backward Wave $\beta_{z, p} \alpha_{z}<0$
Slow Wave	(A)$\left\|\beta_{z, p}\right\|>k$ $\alpha_{\rho, p}>0$ (proper, bound)	(B)$\left\|\beta_{z, p}\right\|>k$ $\alpha_{\rho, p}>0$ (proper, bound)
Fast Wave	(C)$\left\|\beta_{z, p}\right\|<k$ $\alpha_{\rho, p}<0$ (improper, leaky)	(D)$\left\|\beta_{z, p}\right\|<k$ $\alpha_{\rho, p}>0$

$$
\beta_{z, p}=k_{z}+\frac{2 \pi p}{d}
$$

Theory is complicated, but it can be summarized

Methods for complex mode calculations

Peculiar modes investigated here need some fine determination:

- complex wavenumber or complex frequency descriptions
- pairing of modes (long discussion in literature)
- spectral points with vanishing derivative
- time domain description of polarization

Methods:

- Green's function methods, combined with method of moments (MoM)
- Mode matching (field expansions)
- Commercial software is not able to determine complex modes, but it can be combined with properties of complex modes (i.e., moving around constraints of commercial software, HFSS, CST, FEKO, NEC)
- Analytic and physical properties

Points to be developed

- Field in periodic structures
- Complex modes in periodic structures
- Peculiar spectral points (RBE, SIP, DBE)
- Possible structures exhibiting peculiar points
- Excitation of complex modes in periodic structures and in truncated periodic structures
- Coupling of modes with fields produced by electron bunches
- Understanding complex modes in the time domain, including polarization evolution

Modes

- Waveguide with elliptical sections

Analyzing Modes

Vanishing derivatives (up to the third one)

Mode	Ratio of Second Derivative Zero Crossing	Ratio of Third Derivative Zero Crossing
$\mathbf{1}$	None	None
$\mathbf{2}$	2.85	2.90
$\mathbf{3}$	2.90	3.00
$\mathbf{4}$	2.10	2.60 and 2.80
$\mathbf{5}$	2.30	2.45

