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Abstract: This paper addresses the problem of tracking space-borne objects of interest (Ools)
with a satellite-assisted collaborative space surveillance network (SSN). It is formulated as a
multiple moving-object tracking problem in a hybrid distributed wireless sensor network (WSN)
made of both mobile and static nodes. The static nodes may be considered as ground-based
sensors with fixed locations, while mobile sensor nodes can be satellites in space. At any given
time, due to relative motion among nodes and Ool’s, not all sensors are capable of observing
a given target. The number of space Ool’s (targets) of interest is several orders of magnitude
larger than the number of nodes in the SSN, and each node can observe only a finite number
of targets at a time. The challenge is to be able to schedule the nodes so that the best
possible node-target assignments are made. A distributed approach is more desired in terms
of scalability and robustness. However, for a distributed scheduling scheme to be efficient the
distributed scheduling decisions need to be consistent across the network, which in turn requires
the distributed local tracking estimates to be consistent across the network. As a result, the
problem turns out to be a nonlinear consensus tracking problem on a time-varying graph with
incomplete data and noisy communications links. We propose a distributed and collaborative
framework in which each node in the network updates its tracking estimate of an object based on
its own observations via an extended Kalman filter (EKF), followed by a consensus update stage
in which nodes exchange their local estimates in order to arrive at a consensus on the distributed
estimates leading to conflict-free node scheduling. Simulations of a two-dimensional hybrid SSN
have been carried out in order to evaluate the performance of the proposed distributed tracking
with consensus algorithm. The performance results show that the proposed algorithm indeed
performs very well under conditions that can be expected in a realistic SSN, paving way for

possible distributed scheduling.
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1. INTRODUCTION

The problem of tracking space-born objects of interest
(Ools) is a challenging problem due to the physical con-
straints on the available space surveillance network (SSN)
architecture. For example, the current space surveillance
network presumes a handful of ground-based sensor nodes
connected in a centralized architecture. The number of
possible space Ools that could be present in the space
region of interest (Rol), on the other hand, may be several
magnitudes larger than the number of sensor nodes. There
is a great possibility that these fixed sensor nodes may
not be able to fully cover the space Rol, leaving some
space objects never to be detected. Moreover, some space
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Ools may unnecessarily be covered by several sensor nodes,
perhaps wasting the network resources. As a solution to
these constraints we propose to integrate a small number
of space-born mobile sensor nodes (i.e. satellites) to the
ground-based fixed SSN. Conceivably, the addition of even
a small number of satellite sensor nodes in to the SSN can
dramatically improve its coverage. In this paper we con-
sider such a satellite-assisted space surveillance network
(SA-SSN).

A routine task of an SSN is to assign detected targets to
the sensor nodes for the purpose of tracking. This node-
target scheduling is important due to the sensing limita-
tions of nodes and the finite maximum number of targets
each node can sense/track at any given time. Traditionally,
this tracking and node-target scheduling is implemented
in a centralized processing architecture. While centralized
SSN architecture has its own advantages, a distributed
architecture may possibly be flexible and more efficient.



The distributed architecture is easily scalable and perhaps
more robust against node failures. However, since not all
nodes may be able to observe a given target with the same
quality, in a distributed processing architecture different
sensor nodes may arrive at different local estimators re-
garding the same space object of interest. This, of course,
would then lead to inconsistent distributed node-target
scheduling decisions across the nodes in the SSN.

In this paper, we develop a solution to this problem based
on distributed but collaborative processing in which sen-
sor nodes are allowed to exchange their local estimators
with their neighbors. Specifically, we have developed a
distributed and collaborative non-linear tracking algorithm
complemented by a consensus updating algorithm to reach
at a consensus tracking estimate that is consistent across
the whole (connected) network. As we will show later, the
information (in this case, the local estimators) exchange
among nodes may help improve the quality of local estima-
tors. More importantly, sufficient number of repeated ex-
changes can help diffuse information throughout the whole
network allowing all distributed estimators to converge
to a single consensus estimator. Olfati-Saber and Murray
(2004); Kashyap et al. (2007). This is an instant of the
so-called consensus in estimation problem. Kashyap et al.
(2007); Kar and Moura (2008). As a result, the distributed
and collaborative processing problem in such a hybrid SSN
assisted by satellites turns out to be a multiple moving-
object nonlinear tracking with consensus problem on a
time-varying graph with incomplete data (to be defined
later) and noisy communications links.

As mentioned above, according to the proposed distributed
SSN architecture assisted by a hybrid sensor network, the
distributed tracking with consensus stage is followed by a
distributed scheduling algorithm that allocates limited net-
work resources for efficient sensing/tracking of space Ool’s.
In this case, the network resource we are concerned is pri-
marily the processing capability at each node, although it
can easily be extended to take into account other aspects.
Thus the goal of the distributed scheduling algorithm is to
assign each space object to be tracked to the best possible
sensor nodes subject to a constraint on the maximum
number of objects each node can track at any given time.
In this paper, due to space limitation, however we consider
only the design of distributed non-linear tracking of space
Ool’s with consensus. The distributed scheduling problem
is to be addressed in a follow-up paper separately.

The remainder of this paper is organized as follows: In Sec-
tion 2 we describe the orbital dynamics of space Ool’s and
satellite sensor nodes and develop a hybrid WSN to model
the situation. This is followed by details on the assumed
sensing and communication models. Based on these we
next obtain a state-space formulation for multiple moving-
object tracking on a time-varying graph with incomplete
data and noisy communication links. Section 3 presents
the proposed distributed and collaborative tracking with
consensus algorithm for the above autonomous hybrid
SSN. In Section 4 we present several simulation examples
to validate the performance of the proposed distributed
tracking with consensus algorithm for a satellite-assisted
SSN. In particular, we compare the performance of our
algorithm to that attained by a distributed tracking with

centralized decision future architecture. Finally, Section 5
concludes the paper by summarizing our contributions.

2. SATELLITE-ASSISTED SPACE SURVEILLANCE
NETWORK MODEL

2.1 Network node and target models

Consider a satellite-assisted SSN made of n,, (finite) num-
ber of mobile nodes (i.e. satellites) that are on (possibly)
different orbits with known trajectories and ns ground-
based fixed nodes. We may index the fixed ground nodes
asi = 1,2,--- ,n, and the mobile satellites as i = ng +
1,ms+2, -+ ,ng+ny,. Let us denote by Ny = {1,2,--- ;ns}
and NV, = {ns+1,ns+2,--- ,ng + npy}, respectively, the
sets of indices of fixed and mobile nodes respectively. Let
V = N,UN,, and denote the total number of sensor nodes
in the network by n = ns; 4+ n,,. The location of the i-
th (fixed or mobile) node at time ¢ is denoted by r;(¢).
With respect to a reference-frame on the earth, the fixed
node locations are time-invariant. Hence, r;(t) = r; for
i=1,2, -, ms.

The trajectories of the satellite sensor nodes are assumed
to be fixed, deterministic and common knowledge. Hence,
at any given time, each node (be it fixed or mobile) knows
its neighbors within its communication radius R.; which
will depend on the type of air interface used, networking
protocols (single-hop vs. multi-hop), satellite footprint
and, of course, the transmit power level. We assume that
the ground-based fixed nodes are connected together over
a backbone network. Hence, the communication radius
of a fixed node refers to its communication radius with
respect to satellite nodes. The sensing radius R ; of a node
depends on the type of sensing that is being used ! . The set
of communication neighbors of node i at time ¢ is denoted
by Q;(t). As mentioned above since fixed nodes are wired
together, Ny C Q;(t), for i =1,--- ,ny and for all ¢.

The position r,,(t) of the m-th target space object-of-
interest (Ool) relative to the center of the earth is assumed
to satisfy the following equation of motion?:

i‘m:—%rm—kum (1)
||
where p is the gravitational constant of the earth
and u,, denotes the process noise due to perturb-
ing forces acting on the target object and ||r,,(¢)|] =
Va2, (t) +y2,(t) + 22,(t) is the distance from the center
of the earth to the m-th space Ool at time time ¢t. We
may obtain a state-space characterization of the target
dynamics by defining the m-th target state x(™(t) as
XM (E) = (@ (8), ym(8); 2 (), Em (8), G (), 2 (1), 50
that target state dynamics are governed by the state
equation Teixeira et al. (2008)

%) () = £ (x<m> (t)) Ful™ (1), 2)

1 In this work, we are not concerned with the specific type of sensing
being used. The algorithms presented here are mostly independent of
the type of sensing and thus are easily amenable to many situations.
2 In fact, the satellite sensor nodes also follow the same equation
motion.



where £ (x™)(8)) = (@ (t), Gn(8) 20 (8), e (),

T
ey (1), —Wzm(t)) and u™ (£) = (0,0,0, o (t)

um,y(t)mmyz(t))T. While in practice the SSN lives in a
3-dimensional space, most important aspects can easily
be considered in two dimensions. Hence, unless stated
otherwise, in this paper we use a two-dimensional (2-
D) hybrid wireless sensor network to model the above
satellite-assisted space surveillance network. Correspond-
ingly, the state x(™)(t) of the m-th space Ool would be

X (t) = (@ (), Y (1), (1), G (1)
2.2 Sensing and observation models

Each sensing node is assumed to have a sensing beam-
width of B ,, for ¢ = 1,--- ,n. We may denote by 6 ;(¢)
the boresight sensing direction of node ¢ at time ¢, and a
node may maneuver the boresight of its sensing beam in
any direction 65 ;(t) € [0,27). However, throughout this
paper we will assume that the boresight directions are
fixed although this has no bearing on the structure of the
proposed algorithm. Let us denote by () = 0s,(t) —
Z (r;(t) — r,n(t)) the angle between the boresight direction
of node i and the line connecting sensor node ¢ and the
m-th target at time ¢ (i.e. the direction of the vector
ry () — r;(t)). Denote by Rs; the sensing radius of node
i. Then, at any given time instant ¢, the i-th node can
observe the m-th target if and only if

ﬁsa’

and 5 (3)

e () —
forme{l,--- ,M} and i € V.

In the following we assume that sensors make both range
and angle measurements. We will denote by y;(¢) a locally
observed signal at node i at time ¢. Assuming that the m-
th target satisfies the sensing conditions (3) with respect
to node i, the observation at node i on the m-th space Ool

at time ¢ will be denoted by y\™ (¢):

K3

rz(t)| S Rs,i |az,m(t)| S

im0 =[] e w
(m)

where v, () is the measurement noise at node i
corresponding to the m-th target, p(r;(t),rn,(t)) =

\/(xm (t) — x5(t))* + (ym(t) — y:(t))® is the range and

P (r;(t), () = arctan (7g:§§§:zl((i))) — arctan (glg) is

the corresponding angle.

Denote by S,,(t) € V the set of sensor node indices
that are observing the m-th space Ool at time ¢ and let
N = |8 (t)| be the number of sensor nodes that observes
the m-th target at time t.

2.8 Communication and hybrid sensor network models

Let us denote by (.; the communications antenna
beamwidth of node i. At any given time, the communi-
cations antenna boresight direction is denoted by 6, ,(t) €
[0,27). For simplicity of exposition, in this paper we as-
sume omni-directional communications antennas so that

Bei = 2m. Hence, at time t a mobile node ¢ € N,
can communicate with any other node i € V if |r;(t) —
ri(t)| < Rc,;. Whether this is also a necessary condition
"depends on whether the network is capable of multi-hop
communications or not. In the following treatment, we will
indeed assume that all communications are single-hop and
thus the condition |r;(t) — ry(t)| < R.; is both sufficient
and necessary.

The graph G(t) of the SSN is time-varying due to the rela-
tive movement of the nodes. However, since, as mentioned
above, fixed nodes are connected over a backbone network,
node i can always communicate with node 4’ if i, € Nj.
The mobile nodes though may or may not have active links
with other nodes (be they mobile or static) at any given
time ¢. With that, the hybrid SSN may be modeled as a
time-varying, oriented graph G(t) = (V,E(t)) where edges
e;iv € E(t) if node 7 is connected to node ¢’ at time t.

3. DISTRIBUTED AND COLLABORATIVE
TRACKING AND CONSENSUS ALGORITHM FOR
AN AUTONOMOUS SSN

In the following, we develop a distributed processing
framework for the above satellite-assisted hybrid SSN in
which all nodes are autonomous. We propose information
sharing among neighboring nodes thus leading to an au-
tonomous architecture in which information processing is
both distributed and collaborative.

According to our proposed framework, each node ¢ locally
processes its observations y;(t) before sharing it with other
nodes. This involves making local decisions, or forming
local estimates. The information exchange among au-
tonomous nodes has two objectives: First, the information
sharing is helpful in terms of improving upon local state es-
timates. More importantly, however, the information shar-
ing becomes critical when nodes need to make distributed
and autonomous decisions on actions that have a global
impact. An example, in this context, is when nodes need
to make autonomous decisions on maneuvering in order
to decide who should track what objects. We term this as
distributed scheduling, as opposed to centralized scheduling
in which a central node makes all such global decisions. To
avoid waste of network resources and conflicts distributed
scheduling clearly requires that all local estimators are in
agreement with each other.

We assume that nodes take observation samples at ¢t =
kh, for k = 0,1,2,---, and generate local estimates at
the rate of % The information exchange period among
nodes is denoted by T, where we assume that T, < h.
Note that, in the context of SSN this is a reasonable
assumption. For the simplicity of notation, let us assume
that h = JT. so that in between each data sample nodes
may perform J >> 1 information exchanges®. We assume
that the communication is always one-hop, so that the
communication at each time instant ¢ = kh is only allowed

3 This set-up can easily be generalized to several situations, notably
the case in which consensus information sharing is performed only
at periodic intervals after several observation samples. In this case,
each node ¢ will simply track the object of interest based on its own
observation sample sequence {y;} according to the tracking-update
step below, punctuated by consensus information sharing at regular
intervals only after many tracking-update steps.



among neighbors. Since all nodes do not have access to the
same information, the resulting state estimates at each
node can, in general, be different.

At each time instant t = kh the processing at each node is
performed in two stages: (a) tracking-update, followed by
(b) consensus-update Jayaweera (2009); Jayaweera et al.
(2010). The tracking-update stage is comprised of two
steps: prediction and filtering. The state-estimator at node
1 for the m-th target after tracking- and consensus-update
stages are denoted, respectively, by fcl(.m)(t) and icl(.m) (t).
In the following, we describe the proposed distributed
and collaborative processing architecture. For simplicity
of notation, we drop the superscript m denoting the
target index since the algorithm is applied for each target
separately.

3.1 Tracking-update step

Let us assume that at time ¢t = kh, node ¢ has its
consensus-updated state estimate X;(k) of a target with
the associated covariance matrix P;(k) (obtained at the
end of consensus update stage, explained below). The
measurement update process is performed in two steps as
is customary in sampled-data EKF.

e Prediction step at node i: For t € [kh, (k + 1)h],
node ¢ performs prediction update as follows:

% (t|kh) = £ (X;(t|kh)) for ¢ € [kh, (k+1)h](5)
P, (t|kh) = Fy(t)P, (t|kh) + Py (tkh)FY (1) + Q.
for t e [kh, (k+1)h] (6)

with initial conditions %X;(kh|kh) = =X;(k) and
Pi(kh|kh) = P;(k), respectively. As usual, P;(t|kh)
is the approximation to the true prediction error
covariance matrix defined as

Py(tlkn) = E{ (x(t) — %(tlkh)) (x(t) = %i(tlkn)" }
obtained via linearization around the last consensus-
updated estimate x;(k) at node i, and F;(t) is the
Jacobian matrix of the non-linear transformation f(.)
along the predicted trajectory x;(t|kh) of (5), given
by

R L0)

ax(t)

x()=%; (t|kh)

o Filtering step at node i € S,,(1):

Note that, filtering step is only carried out at nodes
that observe a given target. Nodes that do not have
measurements of a target m at time ¢t = (k + 1)h
will simply skip the filtering step. As before, let
x;(k + 1lk) = ki(t|kh)|t=(k+1)h. If node i € S,,(1),
then the EKF filtering step is performed as shown
in (7) - (9) (we have dropped the superscripts m),
where K;(k 4+ 1) is the extended Kalman filter gain
at time t = (k + 1)h at node ¢, [X,],,(k + 1) is
the covariance of the observation noise v;(t) at time
t = (k+ 1)h and H;(k + 1) is the Jacobian matrix
of the non-linear transformation corresponding to the
observation, evaluated at the predicted state estimate
x; (k+ 1]k) at time ¢ = (k + 1)h.

3.2 Consensus-update step

We assume that there are J consensus exchanges in be-
tween each sampled data observation?. At the end of the
tracking-update stage, each node 7 has either a filtered
or predicted state estimate with the associated covariance
matrices. During the consensus update stage, nodes re-
peatedly exchange their local estimates with their one-
step neighbors and update the local estimates. However,
we note that only the nodes that had an observation of a
particular target, and thus holds a filtered estimate of that
target, carries any new information in its local estimate.
Thus, during the consensus iteration that follows the k-
th tracking update stage, only an estimate that has some
dependence on the observations at time k is identified as
an admissible local estimate. In order to reduce the effect
of (communication) noise accumulation, only those nodes
with admissible local estimates are allowed to share their
local estimates withe their neighbors. Let S* denote the
set of nodes that has admissible local estimates to be
shared with others at the beginning of iteration j, for
j=1,---,J, that follows the k-th tracking step, where
we have again dropped the index m denoting a particular
target. We call S¥7 the admissible node set.

As mentioned above, due to time-varying topology of the
network graph, some nodes do not observe certain targets
at a given time. At j = 0, these nodes thus do not have an
admissible local estimate x;(k+ 1|k + 1) to be shared with
other nodes. However, as information exchange among
nodes progresses some of these nodes may be able to form
their own local estimates by combining what they receive
from others with their (local) pure predictors, thereby
allowing them to join the admissible node set.

For clarity of notation, let us denote the network graph
G(t) = (V,E(t)) at time t = kh + (j — 1)T. by G(k,j) =
(V,E(k,j)). Let D(k,j) be the diagonal degree matrix of
the network graph at time ¢t = kh+(j—1)T.. The adjacency
matrix of the graph G(k,j) is denoted by A(k,j) =
[Aii’ (k7j)]7 where A”/(k7]) = 17 if the edge (’L7 Z/) € S(khj))
and A;;/(k, j) = 0 otherwise. The graph Laplacian matrix
is then defined to be L(k,j) = D(k,j) — A(k, J).

It is important to note that, since only the admissible
nodes transmit their local estimates to the others, the
effective network graph for the consensus exchanges is
different from the actual network graph G(k,j). Let us
consider the j-th consensus iteration that follows the k-
th tracking step so that t = kh + (j — 1)T,.. Let S*J
be the admissible node set. Then, the effective network
graph G(k,j) = (V,E(k,j)) at time t = kh + (j — 1)1,
corresponding to the network G(k,j) with the admissible
node set S*J is obtained by removing all outgoing edges
of nodes that are not in S¥7. Then, it can be shown that
the adjacency matrix A(k, j) of the effective network graph

G(k,7) is given by A(k, j) = A(k, j)Ist.;, where Ig; is an
n x n diagonal matrix generated from the active node set
Sk as follows:

4 Of course, for sufficient information diffusion across the whole
network, J needs to be large enough. How large J needs to be
depends on the algebraic connectivity of the corresponding graph
of the network.



Ki(k+1)=

Pi(k+1k+1)=1-K;(k+1)H

Pi(k+1|k)HT(k+1)( i(k+ DPi(k + 1k)H] (k+1) + [v]“.(k+1))
i (k4 1k +1) =% (k+1|k) + Ki(k + 1) (ga(k + 1)
H;(k + 1)) Pi(k + 1|k)
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e el -/ k,j
[Iskﬂ']ii/:{l ifi=4did andi €S8 (10)

0 otherwise

The corresponding degree matrix D(k, j) can then be ob-
tained by A(k, j) leading to the Laplacian matrix L(k, j) =

Let x;(k,j) be the i-th node’s updated local estimate at
the j-th consensus iteration that follows the k-th EKF-
tracking update step. Let X(k, j) = [X1(k,5), -
be the Nn- length estimator after the j-th consensus up-
date, for j = 1,---,J with the associated covariance
matrix P(k, 7). Note that P;(k) required in the earlier
prediction tracking update step is indeed the i-th NV x IV
main diagonal block of this P(k, j). With these definitions,
now we are in position to explain the consensus updating
process as below:

First, the consensus iteration loop that follows the k-
th tracking update stage is initialized as follows: S¥0 =
Si(t), for the m-th target. If i € S¥9 then %x;(k,0) =
X;(k|k). Otherwise, we arbitrarily set x;(k,0) = 0 and
P;(k|k) = €Iy for some € > 0. Then, the initial covariance
matrix P(k,0) = Py (k|k) & - ® P, (k|k)®

Next, note that the received data vector at node ¢ at time
t = kh+(j—1)T. (corresponding to the j-th exchange after
the k-th tracking-update), for j = 1,--- , J, can be written
as Zi(kv.]) = ( ,le(k .])7 iT2(kvj)7 e 7Z7,,'I:i71(k j)a z z(k ])
2l (kg), 2l (K, j))T where each z; i (k, §) is a noise
corrupted version of the N-vector X;(k,j — 1) except for
i’ = 4 in which case there is no noise: i.e. z; . (k,j) =
X (k,j—1)+wy i(k,j), for j =0, ,J, where wy ;(k, j)
denotes the (wide-sense stationary) zero-mean receiver
noise at node 7 in receiving the estimator of node ¢’ and
thus w; ; = 0 for all ¢, where O denotes an N-vector of all
zeros. Let E {wi/ﬂ-wg,:i} = ¥, ;. Note that if either node 7’
does not have a valid local estimator to be shared or if it is
not, connected to node 7 according to the graph topology,
then z; » = 0.

At the j-th consensus iteration step, each node ¢ forms
a linear estimator of the following form as their updated
consensus estimate:

Xi(k,j) =%i(k,j — 1)
+')/z ZAZ’L Zzz k .7) ( 7j - 11)11)

where 7;(j) is a weight coefficient used at node i. While
for Vi € &7 these may be chosen arbitrarily (subject
to convergence requirements), for i € (S7)° and if

5 The assumption here is that at the beginning of the consensus-
update step, the distributed estimators at different nodes are statis-
tically uncorrelated. Of course, as the consensus iteration progresses
these estimators will tend to be more and more correlated.

X (K, )T

S A (k,j) # 0, we explicitly propose to set v;(j) =
(o5 A (K, j))_l. The reason for this particular choice,
as we will see later, is to ensure the unbiasedness of
the consensus estimate. Let us define the diagonal ma-
trix T'(j) = diag (v1(§), -+ ,vn(y)). With these, it can be
shown that the consensus update dynamics are given by
the following equation

X(k,5) =X (k,j = 1) = [LG)Lk, 5)] © IN] X(k, 5 — 1)
—[I'() ® IN] W(j), (12)
where ® denotes the Kronecker product, w(j) = (wy(j)”

T
c,wa()T) T with wi(g) = =350 A (K, 5)wi',i(j).
Recall that w; ; denotes the receiver noise at node 7 in
receiving the estimator of node 7’.

Let us define e(k, j) to be the error vector after the j-th
consensus update that followed the k-th tracking step:

&(k,j) = X(k,j) — (1 @ In)x(k), (13)

It should be noted that in (13) we have assumed that the
true state of the target space Ool is constant during the
consensus updating process. In reality, the state of the
space object will evolve during the consensus-updating
process. However, if the information exchange rate much
faster compared to the target velocities this will cause
negligible difference. If on the other hand, that is not the
case, the current algorithm can be modified to account for
this state evolution from ¢ = (k+ 1)h tot = (k+ 1)h +
(j — 1)T. when the j-th update is performed. However,
this needs enough care to ensure that a reasonable con-
vergence of the consensus algorithm can be guaranteed,
which is beyond the scope of this paper. Note that, the
corresponding covariance matrix associated with the error

vector & is given by P(k, j). From (12) and (13), it follows
that
e(k,j) = (A(k,j) @ In) e(k,j — 1) = [L(j) © INn] W(j)

+[[A(k, ) ® In] — T x(k),
where A(k,j) =1 —T(j)L(k,j).

Assuming that the filtered estimate X(k+ 1) at the end of
the measurement update stage is an unbiased estimate, so
that X(0) is unbiased, from (14) the unbiasedness in the
consensus estimator X(j) can be maintained if the coeffi-
cient matrix A(k, j) satisfies (A® Iy) —I) (1 ®1Iy) =0,
which is equivalent to requiring ((A —1I,)1) ® Iy = 0.
From this, it follows that the unbiasedness in the consen-
sus estimator X(k,j) requires that 0 is an eigenvalue of
the effective Laplacian matrix L(k, j) with the associated
eigenvector 1. If indeed we assume this to be the case, then
from (14) it is easily seen that covariance matrix evolved
as given in (15).

(14)



Pk, j) = (A@Ty) P(k,j — 1) (A @ Iy)" +E{[0() & Iy w(i)w(i)" [P() @ Tn]" }

(15)

3.8 Discussion of the convergence properties of the algorithm the asymptotic consensus and steady-state convergence

For the simplicity of the algorithm, it is convenient to let
vi(j) = ~(j) for Vi € S7. The choice of {v;} needs to
be such that the rapid consensus among all estimators is
achieved. On the other hand, we believe that to ensure
the asymptotic convergence of the consensus estimator (to
the constant vector x(k)), the sequence {v,;} may need
to satisfy the usual necessary conditions of Z;io v = 00

and Z;io ,sz_ < o0. The second condition requires that the
sequence 7; be decaying fast enough to avoid catastrophic
noise accumulation Mosquera et al. (2008). Indeed our
simulations verify this conjecture.

It should be noted that the structure of the proposed
distributed tracking with consensus algorithm is different
from the consensus in tracking formulation assumed in
Olfati-Saber (2005). Indeed, in our formulation, for a
fixed k, the attempt is to achieve asymptotic convergence
in terms of j, whereas in Olfati-Saber (2005) essentially
J = 1: i.e. there is only a single consensus exchange at
each k. Since the objective of the distributed SSN is to
have consistent state estimates across all nodes at any
given time k, our formulation is indeed the appropriate
one in this context. It then needs to be pointed out that
for a fixed k, the consensus in j is a problem of consensus
in estimation where as that in Olfati-Saber (2005) is a
problem of consensus in tracking. Since for each j, for a
fixed k, the effective network graph and its Laplacian is
different (due to the time-varying admissible node set S*
as a function of j), this then turns out to be a consensus
in estimation over noisy, time-varying graph.
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Fig. 1. The MSE performance. J = 10 in the consensus
algorithm.

In Jayaweera et al. (2010); Ruan and Jayaweera (2010)
it was shown that if the system dynamics and observa-
tions were to be linear the above consensus in estimation
algorithm (i.e. for a fixed k) is guaranteed to converge
to a network-wide consensus in the presence of randomly
time-varying, incomplete graph dynamics, as long as each
edge is active with non-zero probability. Furthermore, in
Ruan and Jayaweera (2010) the authors established ana-
lytical conditions on the time-varying graphs under which

(without communication noise) can be guaranteed. An
implication of these results is that if the graph G(k,j) is
connected, then each edge of G(k, 7) will become active af-
ter some point in the sequence of effective network graphs

- o
{G(k, j)} , thereby guaranteeing the asymptotic con-
j=1
vergence of the consensus estimate across our distributed
SSN as well.

On the other hand, if there were no communication noise,
then a valid question is whether asymptotically in k£ nodes
will also achieve consensus. This was shown to be the
case for linear dynamics and observations and J = 1
in Olfati-Saber (2005). It can be shown that this still
is the case for J > 1 as long as the system dynamics
and observations are linear (details omitted here due to
space). In the case of non-linear system dynamics, as
in the SSA context as assumed here, it is difficult to
provide analytical convergence proofs for the consensus
in this sense (i.e. in k). However, in the following section
we will use extensive realistic SSA network simulations
to demonstrate the effectiveness and convergence of the
proposed distributed SSA algorithm.

4. PERFORMANCE OF THE DISTRIBUTED
ARCHITECTURE

In all simulations we have assumed 2-D SSN with 5 sensors
total, 4 of which are ground based with the other orbiting.
The 4 ground based sensors are spaced evenly around the
Earth and the orbiting sensor has an orbital radius of 6320
km. For simplicity, we consider a single target of interest
that has a slightly eccentric orbit (e = 0.0597) with a mean
orbital radius of 11776 km. The sample time T = 172s for
all simulations, and each simulation lasts one sidereal day
(86164s).

In Fig. 1 we show the effect of consensus exchanges in
bringing the local estimates closer to the actual target
location. We use the average Mean-Squared Error (MSE)
defined as £ 3" | [|x — x||? as a measure of this. Fig.
1 shows this average MSE at each time instant k& with
the proposed distributed consensus algorithm without any
communications noise as well as with noise with o2 = 0.1.
Also included in Fig. 1 are the average MSE if local nodes
run their own local EKF’s without any data/estimate
exchanges. Moreover, Fig. 1 also shows the MSE if these
local estimates were fused by a central fusion node. As
seen in 1 indeed the consensus exchange step helps reduce
the average MSE of distributed local estimates. Moreover,
in some cases, the consensus can help reduce the average
MSE even beyond that with central fusion of distributed
estimates. This is because with our proposed consensus
algorithm thee is the likelihood that at some point even
a node which does not have any observations might get a
better local estimate due to the information received from
other nodes. From then on, this node might be able to
predict a reasonably good estimate for the target location.
However, without consensus these nodes will always have
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Fig. 2. The impact of information sharing among nodes (a) Maximum and minimum errors with and without consensus.
(b) Comparison of the variance of node estimates with and without consensus.

bad estimates and thus fusing them at a central node may
not help.

It should be noted that, the objective of the consensus step
is to actually bring the distributed node estimates closer
to each other, than closer to the actual target state! In
Fig. 2a we show the maximum and minimum deviations
of the local estimators, across all nodes in the network,
from the actual target state if only distributed local EKF
algorithms were allowed. It also shows the maximum
and minimum deviations from the true target location
when the distributed tracking with consensus is performed.
First of all note that when the communication noise is
sufficiently small, after the consensus the maximum and
minimum deviations are almost the same since nodes
achieve close-enough consensus. More importantly, as can
be seen, in many cases, with our proposed distributed
tracking with consensus algorithm the deviation from the
actual target state is considerably reduced compared to the
worst case deviation some nodes had without consensus
exchanges.

As a final performance result, in Fig. 2b we compare
the variance of node estimates (across the nodes in the
network) with only local EKF estimates and with the pro-
posed algorithm. Note that the variance of node estimates
are computed as 2 3" | |[%|[2— (£ Y7 | %) [|%. As can be
seen the disparity among node estimates is vastly reduced
due to consensus exchanges. Of course, the effectiveness of
the consensus updating depends on the number of consen-
sus iterations J. As can be seen from fig. Fig. 2b even with
a single round of consensus exchange, the overall variance
among nodes greatly reduced. As the number of iterations
increases the variance also decreases ultimately achieving
almost perfect consensus (for example, with J = 10).

5. CONCLUSION AND FURTHER WORK

A distributed and collaborative tracking algorithm for a
space surveillance network embedded with satellite-based
sensor nodes was proposed. We formulated the problem as
a multiple-object consensus tracking problem on a time-
varying graph with incomplete data and noisy commu-
nications links. The performance of the proposed dis-
tributed processing architecture was evaluated and com-
pared against the achievable performance with a central-

ized architecture via simulations. As confirmed via our
simulation results, the proposed tracking with consensus
algorithm significantly reduces the variance of the dis-
tributed node estimates. Thus, our proposed framework
is a suitable candidate for a system in which scheduling
and other decisions are to be made distributively, because
local decisions will be based on the (almost) same target
estimates that will lead to consistent distributed decisions.
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