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Abstract—Spectrum awareness is one of the most challenging
problems in wideband autonomous cognitive radio (WACR) de-
sign. Detection and classification of low-SNR signals is important
for proper WACR functionality as it enables the radio to adapt
to the user needs and surrounding RF environment. In this
context, identification of radar and communications signals is
critical in various applications, especially, electronic warfare.
This paper introduces a classification framework for radar and
communications signals based on their cyclostationary features,
specifically, the cyclic profile. Two classification algorithms are
used: an artificial neural network (ANN) and a convolutional
neural network (CNN). The simulation results show that cyclic
profile is a good candidate compared with other features to
distinguish between radar and communications signals even at
very low SNRs. Furthermore, from a complexity perspective, the
ANN is shown to be more effective than the CNN in the proposed
classification framework.

Index Terms—Convolutional neural network, cyclostationary
features, pulsed radar, signal classification, spectrum awareness,
wideband autonomous cognitive radios.

I. INTRODUCTION

With their ability of self learning and autonomously re-
configuring a complex RF system, wideband autonomous
cognitive radios (WACRs), have found increasing relevance
in a wide range of applications during the past few years
including, for example, military, homeland security, aerospace
and consumer wireless communications [1], [2]. Indeed, the
key to such autonomous operation is the spectrum awareness.
Unlike traditional RF systems that treat each detected signal
equally and pass it through the same processing steps, WACRs
may distinguish among different signals to determine what is
important and what is not. As an example, a GPS spoofing
signal or unmanned aerial vehicle (UAV) command link may
be present in a band where only radars are expected. In
this case, the WACR may need to identify and isolate these
unexpected signals.

The purpose of this paper is to distinguish between radar
and communications signals. We selected these two types of
signals because they are widely used and they may overlap
in various applications. For example, in modern electronic
warfare, integrative reconnaissance technology for radar and
communication signals on a single platform can be found [3].
However, the proposed approach can be extended to beyond
radar and communications signals to detect, characterize and
label all different types of signals, such as, military, GPS,
space operations. Furthermore, a second level of classification

could be applied to each type of these signals: For example,
the communications signals could be classified to WiFi, Blue-
tooth, LTE, etc.

Despite the importance of radar and communications sig-
nals, discrimination between these two classes of signals still
remains relatively unexplored. Most of the work on this area
are done separately for classification of communications or
radar signals, and not both together [4] – [6]. For example, in
[4], different communications signals are considered: global
system for mobile communications (GSM), digital enhanced
cordless telephony (DECT), radio local area network (RLAN),
digital audio broadcasting (DAB) and digital video broadcast-
ing terrestrial (DVB-T). The channel bandwidth in [4] was
found to be the most discriminating parameter and it is used
as a reference feature. For classification, a radial basis function
(RBF) neural network is employed.

The authors in [5] introduced a discriminating mechanism
between two modes (FH-CDMA and DS-CDMA) related to
two standards (Bluetooth and IEEE 802.11b) in an indoor
environment. The standard deviation of the instantaneous fre-
quency and the maximum duration of a signal were extracted
using time-frequency analysis in [5] and neural networks
were used for identification of active transmissions using
these features. On the other hand, a system for automatically
recognizing radar waveforms was introduced in [6]. Eight
different radar pulse compression waveforms were considered
in [6]: linear frequency modulation (LFM), discrete frequency
codes (Costas codes), binary phase codes, Frank, P1, P2, P3,
and P4 polyphase codes. In addition, two classifier structures
based on the early-stop committee (ESC) and the Bayesian
multilayer perceptron (MLP) have been proposed.

Our proposed framework for radar and communications
signals classification uses a cyclostationarity based feature
known as the cyclic profile. An interesting point of this work is
that we selected two communications signals that are widely
used: WiFi and LTE, and experimented in separating them
versus wide range of different radar signals. The selected radar
signals include: LFM pulse, biphase-coded pulse, Barker-
coded pulse and Frank-coded pulse. Another aspect of this
work is that we investigate the application of deep learning
techniques, such as, convolutional neural network (CNN) for
radar and communications signals classification. In addition,
the artificial neural network (ANN) is used as a traditional
classification option for comparison purpose. Furthermore, the
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Figure 1. Overview of the proposed cognitive classification framework.

robustness of the proposed technique is tested against white
Gaussian noise with different signal-to-noise-ratio (SNR) val-
ues.

The remainder of the paper is structured as follows: First,
the proposed cognitive classification framework is described
in Section II. Section III introduces a case study for a selection
of radar and communications signals. The simulation results
are presented in Section IV. Finally, concluding remarks are
given in Section V.

II. PROPOSED COGNITIVE CLASSIFICATION FRAMEWORK

Figure 1 shows the proposed cognitive classification frame-
work for radar and communications signals. The WACR has
to sense the spectrum of interest to detect the presence of
the signals. Next, it has to extract features from the detected
signals and then use a classifier to identify whether the
observed signal belongs to a radar or a communications
system.

A. Feature extraction
A good feature set should reduce the data size, and maintain

the necessary information to accurately discriminate among
the different signals types. The occupied bandwidth and max-
imum power spectral density are two basic features that are
widely used for signal classification. However, if the signals
occupy the same bandwidth or have the same power level
the classification operation would be very difficult using these
features. In this case, cyclostationarity based features may be
a good candidate.

Man-made signals such as wireless communication and
radar signals typically exhibit cyclostationarity at multiple
cyclic frequencies that may be related to the carrier frequency,
duty cycle, symbol, chip and code rates, as well as their
harmonics, sums, and differences [7]. Exploiting these period-
icities allows designing powerful feature detectors with very
appealing properties.

A signal y(t) is said to be wide-sense cyclostationary with
period T0 if its mean and autocorrelation are both periodic
with period T0,

µy(t+ T0) = µy(t), Ry(t+ T0, τ) = Ry(t, τ). (1)

The autocorrelation function of a wide-sense cyclostation-
ary signal can be expressed in terms of its Fourier series
components

Ry(t, τ) =
∑
α

Rα
y (τ)e

j2παt, (2)

where α is the cyclic frequency and the Fourier component
Rα

y represents the cyclic autocorrelation function

Rα
y (τ) =

1

T

∫ T/2

−T/2

Ry(t, τ)e
−j2παtdt. (3)

The Fourier transform of the cyclic autocorrelation function
is known as spectral correlation function (SCF) and is given
by

Sα
y (f) =

∫ ∞

−∞
Rα

y (τ)e
−j2πfτdτ, (4)

where f is the angular frequency.
The major benefit of spectral correlation is its insensitivity

to background noise since correlation measures the temporal
correlation of different spectral components, and the spectral
components of white noise are completely uncorrelated in
time. This fact allows the spectral correlation of a signal to
be accurately calculated even at low SNRs. SCF computation,
however, requires large amount of data and directly using it
as a feature may be computationally too prohibitive. Instead,
we can use the cyclic profile given by

I(α) = max
f

Sα
y (f) (5)

as a feature vector for the signal classification.

B. Classification tools

The classification tools used in this work are: artificial
neural networks and convolutional neural networks. The ANN
is based on back propagation algorithm which is one of
the most widely applied neural network models. The back
propagation is used to update the weights and biases of hidden
layer neurons of the network. The weights and biases are
updated such that they minimize the error of each output
neuron based on the output predictions it produces versus the
correct a priori outputs we know from the training set [8].

The CNN, on the other hand, is one of the deep learning
neural networks that have proven very effective in areas such
as image recognition and classification. The CNN takes the
input and passes it through a series of convolutional, pooling
(downsampling), and fully connected layers [9]. Note that
in ANN, every neuron in the network is connected to every
neuron in adjacent layers. In the CNN, however, each neuron
in the first hidden layer will be connected to a small region
of the input neurons and each connection learns a weight [9].



III. CASE STUDY

Consider six different signals, where two of them (Sig1 and
Sig2 ) belong to communications systems and the remaining
four (Sig3, Sig4, Sig5 and Sig6) belong to the radar systems.
All the processing are done in baseband. Sampling rate of
2 Msamples/sec is used for all signals. The radar signals
are all pulse compression waveforms. Sig3, Sig4, Sig5 and
Sig6 use LFM, biphase-coded pulse, Barker-coded pulse and
Frank-coded pulse, respectively. The pulsed radar transmits
electromagnetic (EM) waves during a very short time duration,
known as pulse width. During this time, the receiver is
isolated from the antenna, so that no received signals can be
detected during this time. During the time between transmitted
pulses, the receiver is connected to the antenna, allowing it to
receive any EM waves (echoes) that may have been reflected
from objects in the environment. This listening time plus the
pulse width represents one pulsed radar cycle time, normally
called the pulse reception interval (PRI) [10]. The number
of transmit/receive cycles the radar completes per second
is called the pulse repetition frequency (PRF), measured in
cycles per second.

In LFM, the waveform sweeps the oscillations across a
range of frequencies during the pulse transmission time. The
phase-coded waveforms, on the other hand, are composed
of concatenated subpulses (or chips) where the phase coding
from chip to chip is chosen to elicit a desired main-lobe and
side-lobe response. For example, in biphase-coded pulse, the
relative phase changes between one of two values, either zero
or π radians. The parameters of Sig3 that uses LFM are as
follows: pulse width = 80 µsec, sweep bandwidth = 0.5 MHz
and PRF= 0.4 Kcycles/sec. Sig4, on the other hand, uses
biphase-coded pulse with the following parameters: chip width
= 1 µsec, number of chips = 50 chips/pulse and PRF = 0.4
Kcycles. Unlike biphase-coded waveforms, polyphase-code
waveforms like Barker and Frank codes posses more than two
phase states [10]. Sig5 uses Barker-coded with chip width of 1
µsec, 13 chips/pulse and PRF of 0.4 Kcycles. Sig6, on the
other hand, uses Frank-coded with the following parameters:
chip width = 1 µsec, number of chips = 4 chips/pulse and
PRF = 0.4 Kcycles.

For communication signals, we have used WiFi signal and
LTE signal as Sig1 and Sig2, respectively. The generated
WiFi signal is corresponding to the IEEE 802.11 sub 1 GHz
(S1G) format physical layer (PHY) packet [11]. Assuming
one transmit antenna, Sig1 uses OFDM modulation with a
channel spacing of 2 MHz. Sig2, on the other hand, represents
the LTE signal that follows model ‘1.1’ in TS 36.141 3GPP
specification [12]. The parameters of the signals are chosen
such that Sig3 and Sig2 have a similar bandwidth of 0.55
MHz. On the other hand, Sig4, Sig5, Sig6 and Sig1 have
similar bandwidth of 0.87 MHz. Furthermore, all signals have
the same power level which makes the classification operation
more challenging.

Figure 2. Cyclic profile of normalized SCF for Sig1 (WiFi signal).

Figure 3. Cyclic profile of normalized SCF for Sig4 (Biphase-coded Pulsed
radar signal).

IV. SIMULATION RESULTS

In this section, we conduct four test cases to show the
efficiency and the robustness of the proposed cognitive classi-
fication technique. In the four test cases, different types of
classifiers have been used based on ANN and CNN with
different numbers of layers as shown in Table I. For each
test case we select four signals for both training and testing
from the signals described in the previous section, where the
first two signals are communication signals and the other two
are radar signals. The target is to classify the signals into two
classes: class 1 represents communications signals and class
2 represents radar signals.

At the beginning, the WACR extracts the required features
from the signals. As mentioned earlier, our reference feature
is the cyclic profile of the SCF defined in (5). As an example,
Figs. 2 and 3 show the cyclic profiles of the Sig1 and Sig4,
respectively. Due to the symmetry of the cyclic profile around
α = 0, we take only half of the cyclic profile as our input
feature vector. The extracted features are then applied to the
classifier. For classifier training, 200 signals from each type of
the four signals are used. Thus, the training input is an array



Table I
CONFIGURATIONS OF DIFFERENT CLASSIFIERS.

Classifier Layers Learning rate Training cycles
ANN1 1 hidden layer with 2 neurons, and 1 output layer with 1 neuron 0.3 1000
ANN2 1 hidden layer with 4 neurons, and 1 output layer with 1 neuron 0.3 1000
ANN3 2 hidden layers with 4 neurons each, and 1 output layer with 1 neuron 0.3 1000
CNN1 1 convolutional layer with 5 filters of size 1×128, 1 average pooling layer with

filter size 1×32, 1 rectified linear unit (ReLU), and 1 fully connected layer
0.1 900

CNN2 1 convolutional layer with 10 filters of size 1×256, 1 average pooling layer with
filter size 1×64, 1 rectified linear unit (ReLU), and 1 fully connected layer

0.02 900
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Figure 4. Test case 2: comparison between classification accuracy of the
proposed technique based on cyclic profile feature “proposed” and another
case with different type of features “other”.

with 800 entries, where each entry represents a row vector of
cyclic profile values corresponding to a signal. Another 800
signals are generated for the purpose of classifier testing.

In test case 1, Sig1, Sig2, Sig3 and Sig4 are used for both
training and testing. Table II summarizes the classification
accuracy in test case 1 with different classifiers and for
different SNR values. From Table I, ANN1 consists of 1
hidden layer with 2 neurons and an output layer with 1 neuron.
From Table II, the ANN1 performs well until SNR of −6 dB
with a very high classification accuracy. At SNR= −8 dB, the
performance of ANN1 degrades to the worst case in which
radar signals are always falsely classified as communications
signals. ANN2 has 1 hidden layer with 4 neurons. From Table
II, at high SNR values, the classification accuracy of ANN2 is
at the highest possible level. The performance of ANN2 starts
to degrade when SNR value goes below −6 dB. At SNR= −10
dB, the classification accuracy becomes around 82% level.

We tested the effect of adding one more hidden layer on the
performance with ANN3. However, compared with ANN2,
using ANN3 didn’t improve the performance as shown in
Table II. As a result, comparing the different used ANNs, the
ANN2 with 1 hidden layer and 4 neurons achieves the best
performance. Another interesting scenario is to investigate the
performance of proposed classification techniques with deep
learning algorithms as in CNN1 and CNN2 cases. It can be
shown from Table II that CNN1 performs well until SNR of

−4 dB, after that the classification accuracy degrades to 50%.
On the other hand, CNN2 with additional and large filters
at the convolutional layer, can achieves better performance
than CNN1 with classification accuracy close to the ANN2 as
shown in Table II especially for low SNR values.

In test case 2, we made a comparison between the pro-
posed classification scheme based on cyclic profile, named
“proposed”, and another classification scheme with different
features, named “other” using the same signals that have been
used in test case 1. In the “other” case we selected two
features that were previously used in [4], [5]: bandwidth and
standard deviation of the instantaneous frequency. From Fig.
4, the cyclic profile outperforms the other features case using
different classifiers with SNR below 0 dB.

In test case 3, the radar signals that have been used for
training the classifier are different from the ones that have
been used for testing. Sig1, Sig2, Sig3 and Sig5 are used
for training the classifier. On the other hand, the signals that
are used for testing include Sig1, Sig2, Sig4 and Sig6. Table
III summarizes the classification accuracy in test case 3 with
different classifiers. As in test case 1, ANN2 and CNN2
achieve the best performance.

In test case 4, we evaluate the performance if the SNR
value in training signals is different than the value in testing
signals. Table IV shows the classification accuracy values in
test case 4 with different SNR values. We kept the SNR value
of the training signal at 0 dB level, while varying the SNR
value of testing signals from 0 dB to −8 dB. For testing
signals with SNR value of −4 dB, most of the classifiers
achieve classification accuracy between 88% and 91.25%,
except CNN1 that achieves 78.75%. By reducing the SNR
level of testing signals below −4 dB, the performance of most
of the classifiers degrades sharply with a noticeable superiority
when using the ANN2.

These results show clearly that cyclic profile is a good
candidate for classification between radar and communications
signals even at low SNR values. This is because the cyclic
frequencies can correspond to important signal features such
as duty cycle, coding rate and modulation scheme that can
discriminate between radar and communications signals. The
cyclic profile enables us to use classifiers with simple con-
figurations based on ANN and CNN. The best classification
accuracy was achieved using ANN2 and CNN2. However,
from the implementation and complexity perspectives, the
ANN2 is more attractive choice than CNN2. This is because



Table II
TEST CASE 1: CLASSIFICATION ACCURACY WHEN TRAINING AND TESTING SIGNALS ARE THE SAME.

Classifier SNR= 0 dB SNR= -2 dB SNR= -4 dB SNR= -6 dB SNR= -8 dB SNR= -10 dB
ANN1 Training: 100%

Testing: 100%
Training: 100%
Testing: 100%

Training: 100%
Testing: 99.88%

Training: 99.88%
Testing: 98.12%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

ANN2 Training: 100%
Testing: 100%

Training: 100%
Testing: 100%

Training: 100%
Testing: 99.88%

Training: 100%
Testing: 98.62%

Training: 99.25%
Testing: 91.5%

Training: 99%
Testing: 82.75%

ANN3 Training: 100%
Testing: 100%

Training: 100%
Testing: 99.75%

Training: 100%
Testing: 99.5%

Training: 99.88%
Testing: 98.62%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

CNN1 Training: 100%
Testing: 100%

Training: 100%
Testing: 100%

Training: 99.88%
Testing: 99.75%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

CNN2 Training: 100%
Testing: 100%

Training: 100%
Testing: 100%

Training: 100%
Testing: 99.88%

Training: 99.25%
Testing: 98.62%

Training: 94.66%
Testing: 91.13%

Training: 89.8%
Testing: 80.5%

Table III
TEST CASE 3: CLASSIFICATION ACCURACY WHEN TRAINING AND TESTING SIGNALS ARE DIFFERENT.

Classifier SNR= 0 dB SNR= -2 dB SNR= -4 dB SNR= -6 dB SNR= -8 dB SNR= -10 dB
ANN1 Training: 100%

Testing: 100%
Training: 100%
Testing: 100%

Training: 100%
Testing: 99.75%

Training: 99.88%
Testing: 97.78%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

ANN2 Training: 100%
Testing: 100%

Training: 100%
Testing: 99.88%

Training: 100%
Testing: 99.62%

Training: 99.88%
Testing: 97.75%

Training: 98.76%
Testing: 91.63%

Training: 96.02%
Testing: 83.87%

ANN3 Training: 100%
Testing: 100%

Training: 100%
Testing: 99.75%

Training: 100%
Testing: 99.38%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

CNN1 Training: 100%
Testing: 100%

Training: 99.88%
Testing: 99.88%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

Training: 50%
Testing: 50%

CNN2 Training: 100%
Testing: 100%

Training: 100%
Testing: 99.75%

Training: 100%
Testing: 99.25%

Training:98.88%
Testing: 98.62%

Training: 94.78%
Testing: 92.25%

Training: 87.31%
Testing: 82%

Table IV
TEST CASE 4: CLASSIFICATION ACCURACY WITH DIFFERENT SNR VALUES FOR TRAINING AND TESTING SIGNALS.

Classifier Training SNR= 0 dB
Testing SNR= -2 dB

Training SNR= 0 dB
Testing SNR= -4 dB

Training SNR= 0 dB
Testing SNR= -6 dB

Training SNR= 0 dB
Testing SNR= -8 dB

ANN1 Training: 100%
Testing: 99.62%

Training: 100%
Testing: 90.12%

Training: 100%
Testing: 73.5%

Training: 100%
Testing: 53.88%

ANN2 Training: 100%
Testing: 99.38%

Training: 100%
Testing: 91.25%

Training: 100%
Testing: 73.88%

Training: 100%
Testing: 60.25%

ANN3 Training: 100%
Testing: 98.88%

Training: 100%
Testing: 88.5%

Training: 100%
Testing: 70.5%

Training: 100%
Testing: 58.25%

CNN1 Training: 100%
Testing: 100%

Training: 100%
Testing: 78.75%

Training: 100%
Testing: 51.25%

Training: 100%
Testing: 52.5%

CNN2 Training: 100%
Testing: 99.75%

Training: 100%
Testing: 88%

Training: 100%
Testing: 72.75%

Training: 100%
Testing: 55.25%

the implementation of CNN2 requires multiple hidden layers
and complicated operations such as convolution and average
pooling, while the ANN2 only has 1 hidden layer with 4
neurons.

V. CONCLUSION

In this paper we proposed and investigated techniques for
discrimination between radar and communications signals us-
ing wideband autonomous cognitive radios. Two communica-
tions signals were selected: WiFi and LTE, and experimented
versus wide range of different radar signals. The radar signals
included linear frequency modulation (LFM) pulse, biphase-
coded pulse, Barker-coded pulse and Frank-coded pulse. The
cyclic profile was used as the reference feature to distin-
guish between the signal types. Two different classification
tools were investigated in this work for comparison purpose:
artificial neural networks (ANNs) and convolutional neural
network (CNNs). Several test cases evaluated the performance

of the proposed classification techniques from different per-
spectives. Simulation results showed that it is indeed possible
to discriminate between the radar and the communications
signals, even at very low SNRs, if the right configurations
for the proposed classifiers were chosen. Furthermore, the
efficiency of cyclic profile was shown compared to other types
of features, such as, bandwidth and standard deviation of the
instantaneous frequency.
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