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Abstract—Sinusoids remain the prototypical waveform for
signal modeling, analysis, detection, and estimation in stationary
environments, but are unsuitable for the analysis of signals with
non stationary frequency content. In [1], the MA-CDFRFT was
introduced as a useful tool for the analysis of multicomponent
chirp signals in the absence of noise. Subspace approaches
derived from a eigenvalue decomposition of the correlation
matrix of noisy observations of sinusoidal signals, such as the
MUSIC or minimum-norm algorithms are popular approaches
for estimating the parameters of multiple sinusoidal signals
in white noise. In this paper, we extend the MA-CDFRFT
methodology to develop a pseudo-subspace approach towards
chirp parameter estimation.

Keywords: Discrete Fractional Fourier Transform, subspace

methods, multicomponent chirp parameter estimation.

I. INTRODUCTION

While Fourier analysis based techniques remain the norm

for the representation of stationary signals, they are unsuit-

able for signals such as linear FM, i.e., chirps, where the

frequency content is not stationary. Conventional techniques

for the analysis of these signals such as the short time Fourier

transform are based on assumptions of sinusoidal modeling

over smaller windowed segments. Discrete Fractional Fourier

analysis techniques have [2], [1] recently garnered attention for

multicomponent chirp signal analysis because of their ability

to concentrate chirps in a few transform coefficients. However,

the underlying analysis is done in the absence of noise.

Subspace approaches such as MUSIC, eigenvector, or min-

imum variance techniques are based on eigenvalue decom-

position of the sample covariance matrix of observations.

These are popular, statistically efficient approaches towards

sinusoidal parameter estimation, and are not plagued by the

bias-variance problem prevalent in the periodogram based

approaches [5]. Recent work in [6] extends the subspace

framework to parameter estimation of chirp signals.

In this paper, we develop a framework for the analysis and

comparison of subspace spectrum estimation approaches such

as MUSIC, root-MUSIC, eigenvector, minimum-norm, and

minimum variance algorithms for discrete Fractional Fourier
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Fig. 1. Eigenvalue distribution of subspace covariance matrices: (a) eigen-
values for Rcf and (b) Rcr for L = 50 snapshots and N = 256 depicting
a large spread with large values corresponding to the pseudo signal subspace
and small values corresponding to the pseudo noise subspace.

transform based chirp parameter estimation. Simulation results

with monocomponent and multicomponent chirp signals are

used to demonstrate the efficacy of proposed approach.

II. SIGNAL MODEL AND MA-CDFRFT PRIMER

The class of signals that we consider here are multicompo-

nent chirp signals of the form:

x[n] =
Ns∑
i=1

Ai exp
(
jωcin + jcrim

2
)

+ w[n] (1)

where m = n− (N − 1)/2, 0 ≤ n ≤ N − 1, w[n] is additive

white Gaussian noise, and (ωci, cri) are the center frequency

and chirp rate of the i-th chirp component.

The discrete fractional Fourier transform (DFRFT) of a

sequence x[n] is defined via [2]:

Xα = W
2α
π x = VΛ

2α
π VT x, (2)

where V are a basis of eigenvectors for the DFT matrix W
and Λ is a diagonal matrix of eigenvectors of the DFT. Direct

computation of the transform requires the computation of a

full basis of non-degenerate eigenvectors for the DFT matrix

[1], [4]. In [1], a fast algorithm for computing the DFRFT

for a discrete set of angles, called the multiangle centered
DFRFT (MA-CDFRFT), exploiting symmetries in the DFT
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eigenvectors, was developed. The multi-angle version of the

CDFRFT is expressed as:

Xk[r] =
N−1∑
p=0

zk[p]e−j 2π
N pr,

zk[p] = vkp

N−1∑
n=0

x[n]vnp (3)

and vkp denotes the p-th component of the k-th DFT eigenvec-

tor. This multiangle transform has the capability to concentrate

chirps in a few transform coefficients and its performance

in noise can be improved to a certain extent by zooming in

close to the peaks using the CZT [3]. However, being a FFT

based transform, it is affected by noise, and its chirp parameter

estimates will be either biased or statistically inconsistent. Sub-

space techniques [5] are expected to improve the performance

of the underlying parameter estimators in noise.

III. SUBSPACE CHIRP PARAMETER ESTIMATION

The DFRFT based subspace algorithm is obtained by cal-

culating the inverse DFT of row and column projections of

the magnitude of the MA-CDFRFT via:

xcr[r] = W−1

(
N−1∑
k=0

|Xk[r]|
)

,

xcf [k] = W−1

(
N−1∑
r=0

|Xk[r]|
)

, (4)

where W−1 denotes the unitary version of the inverse DFT

operator defined in [2]. Effectively xcf and xcr are one

dimensional time-series containing information regarding the

center-frequency and chirp rate parameters. Now define the

covariance matrices associated with the signals xcf and xcr

as Rcf and Rcr respectively. In practice, these covariance

matrices are estimated from noisy observations using sample

covariance estimates [5]. As described in [5], biased co-

variance estimates are preferred over unbiased estimates for

obtaining positive definite matrices. Fig. (1) describes the

eigenvalue distribution of the covariance matrices Rcf and

Rcr for a real chirp using the ”correlation” estimate.

Eigenvalue decomposition of these covariance matrices

yields the desired pseudo-subspace decomposition [5], [6]:

Rcf = VcfΛcfVT
cf

= VcfsΛcfsVT
cfs + VcfnΛcfnVT

cfn

Rcr = VcrΛcrVT
cr

= VcrsΛcrsVT
crs + VcrnΛcrnVT

crn, (5)

where the subscripts s, n denote the S+N and N subspaces. We

use the pseudo-subspace terminology similar to the approach

in [6] because unlike the case of sinusoids in noise, the noise

and signal subspaces do not completely separate. Using these

covariance matrices, one can now develop both pseudo-noise

subspace approaches such as MUSIC, eigenvector, minimum

norm and pseudo-signal subspace approaches such as principle

components Blackman-Tukey or minimum variance for chirp

parameter estimation. The pseudo-spectra for the signals xcf

and xcr with respect to the MUSIC algorithm for example are

given by:

PMUSIC
cf =

1
L∑

k=Ns+1

|eHvcf
k |2

,

PMUSIC
cr =

1
L∑

k=Ns+1

|eHvcr
k |2

, (6)

where Vcf and Vcr are the eigenvector matrices for the

covariance matrices Rcf and Rcr, where Ns is the number

of chirp components present, L is the number of snapshots, e
is the conventional frequency vector, and vcr

k denotes the k-th

column of Vcr. In a similar vein, the principle components

Blackman-Tukey or minimum variance pseudo-spectra for

example would be defined via:

PPCMV
cf =

1
Ns∑
k=1

1
λk

|eHvcf
k |2

,

PPCMV
cr =

1
Ns∑
k=1

1
λk

|eHvcr
k |2

. (7)

The center frequency estimate for each component is extracted

directly from the difference between the corresponding peak

locations in the center frequency pseudo spectrum, while the

chirp rate parameters are estimated from the peaks in the chirp

rate pseudo spectrum and the peak to parameter mapping ap-

proach employed in [6]. An example of the mapping between

the pseudo-spectrum peaks for xcr to the actual chirp rate for

the MUSIC algorithm is illustrated in Fig. (2)(g). Note that

this map for the MUSIC algorithm is bijective and maps a

peak location uniquely to a chirp rate value. This parameter

mapping in general depends on the specific algorithm, the

covariance matrix size L, the number of subspace FFT points

R, and the MA-CDFRFT size N .

Simulation results in Fig. (2,3) depict the application of

the proposed subspace approach to both monocomponent and

two component real chirps using the MUSIC, eigenvector,

minimum norm, PC-BT, and minimum variance spectrum

algorithms at a SNR of 30 dB. It can be seen from the

monocomponent example, that while the performance of the

center-frequency estimator for the different algorithms is more

or less the same, the sharpness of the chirp rate spectral peaks

are diminished in the case of PC-BT and minimum variance

algorithms in comparison to the MUSIC and eigenvector

approaches. Fig. (2,3)(b) describe the MA-CDFRFT spectra

for the signals computed with a FFT size of N = 256. The two

component example examines a cochannel parameter setting,

where the carrier frequencies of the components are identical

with Ns = 4. The pseudo-spectra for the different subspace

361



0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1

1.5

TIME   SAMPLES

M
O

N
O

C
O

M
P

O
N

E
N

T 
  C

H
IR

P
   

S
IG

N
A

L

N = 256, SNR = 30 dB, c  = 0.05, ω  = π/2.0

(a) FREQUENCY   INDEX

A
N

G
U

LA
R

   
 IN

D
E

X

N = 256, SNR = 30 dB, c  = 0.05, ω  = π/2, MA−CDFRFT  SPECTRUM

0 1 2 3 4 5 6

0

1

2

3

4

5

6

(b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−36

−34

−32

−30

−28
N = 256, L = 100, P = 2,2, R = 1024, MUSIC ALGORITHM

P
S

P
E

C
, x

−0.1 −0.05 0 0.05 0.1
−26

−24

−22

−20

P
S

P
E

C
, x

FREQUENCY  IN   RADIANS (c)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
25

30

35

N = 256, L = 100, P = 2,2, R = 1024, EVEC ALGORITHM

P
S

P
E

C
, x

−0.1 −0.05 0 0.05 0.1
35

40

45

P
S

P
E

C
, x

FREQUENCY  IN   RADIANS (d)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5
N = 256, L = 100, P = 2,2, R = 1024, MIN−NORM ALGORITHM

P
S

P
E

C
, x

−0.1 −0.05 0 0.05 0.1
−0.2

−0.1

0

0.1

0.2

P
S

P
E

C
, x

FREQUENCY  IN   RADIANS (e)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
20

25

30

35

40

45
N = 256, L = 100, P = 1,1, R = 1024, PC−BT ALGORITHM

P
S

P
E

C
, x

−0.1 −0.05 0 0.05 0.1
40

45

50

55

P
S

P
E

C
, x

FREQUENCY  IN   RADIANS (f)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

30

35

40
N = 256, L = 100, P = 2,2, R = 1024, MIN−VAR ALGORITHM

P
S

P
E

C
, x

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
38.8

38.9

39

39.1

39.2

P
S

P
E

C
, x

FREQUENCY  IN   RADIANS (g)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

1.2

ACTUAL   c    PARAMETER

x
   

P
S

E
U

D
O
−S

P
E

C
   

P
E

A
K

   
 L

O
C

A
TI

O
N

  (
R

A
D

)

N = 256, L = 100, R = 2048, POST−WIN OPTION, P = 2,4

(h)

Fig. 2. Subspace chirp parameter estimation: (a) real chirp signal with ωc = π
2.0

, chirp rate cr = 0.05, SNR = 30 dB, (b) MA-CDFRFT spectrum
using FFT’s of size N = 256, (c) MUSIC pseudo-spectra for the signals xcf and xcr using a model order of Ns = 2 depicting peaks at locations related
to the chirp parameters, (d,e,f,g) corresponding xcf and xcr pseudo-spectra for the minimum norm, eigenvector, principal components Blackman-Tukey,
and minimum variance spectrum estimation methods. The sample covariance matrices were computed using the ”post-windowed” option in MATLAB with
L = 100 snapshots, and (g) peak to chirp parameter mapping for the MUSIC algorithm using spline interpolation. The estimated chirp rate for the MUSIC
algorithm using the mapping is ĉr = 0.054 while the actual value is ĉr = 0.05.
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Fig. 3. Two component chirp example: (a) composite two component signal at a SNR of 30 dB, (b) MA-CDFRFT spectrum depicting two distinct peaks
corresponding to each chirp component, (c,d,e) MUSIC, eigenvector, minimum-norm, and principal components B-T pseudo-spectra for the signals xcf , and
xcr using a model order of Ns = 4 and a sample covariance matrix with L = 40 snapshots and the ”post-windowed” option in MATLAB.

algorithms using the post-windowed option and L = 50 are

depicted in Fig. (3). The MUSIC, eigenvector approaches

clearly distinguish between the chirp components present,

while the minimum norm and PC-BT approaches are only

able to detect one. The identical carrier frequencies of the

components manifest as a single peak in the carrier frequency

pseudo-spectra. The chirp-rate pseudo-spectra specifically de-

pict a certain amount of peak suppression due in part to the

magnitude projection operation used in the approach.

IV. CONCLUSIONS

In this paper, we have presented a pseudo-subspace ap-

proach for discrete Fractional Fourier transform based chirp

parameter estimation in noise, a topic more or less restricted

to sinusoids in current literature. Simulation results with both

monocomponent and multicomponent chirp signals demon-

strate the ability of the approach to estimate the center

frequencies and chirp rates associated with each chirp compo-

nent. Statistical analysis of the performance of the approach,

comparison to the CRLB, and other issues such as the effect

of: the sample covariance matrix, the number of snapshots,

the DFT eigenvectors, and model mismatch on the parameter

estimates are currently being investigated.
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