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ABSTRACT

The problem of demodulating multiple frequency modulated signals
that overlap spectrally is seen to pervade communication systems
both military and civilian, where bandwidth is a precious resource.
In this paper, we extend the use of the recently developed multiangle
discrete fractional Fourier transform (MA-CDFRFT) for the pur-
poses of cochannel FM demodulation and also investigate its use for
the demodulation of cochannel continuous phase modulation (CPM)
signals used frequently in wireless systems, using rectangular, trian-
gular, or trapezoidal pulse shapes. Simulation results demonstrate
that the approach is able to accomplish cochannel signal separation
and demodulation, where existing multicomponent AM–FM demod-
ulation algorithms fail. It is further demonstrated that for cochannel
CPM demodulation, symbol error probabilities that are comparable
to or smaller than that of coherent BPSK detection in additive white
Gaussian noise.

Index Terms— cochannel FM demodulation, discrete Fractional
Fourier transform, CPM demodulation.

1. INTRODUCTION

The multicomponent linear–FM or chirp signal model finds numer-
ous occurrences in radar systems, biomedical applications, and in
communications systems. Demodulating these multicomponent lin-
ear chirps is straight forward when the components are distinct. Tra-
ditional bandpass filtering followed by monocomponent demodula-
tion would suffice. However, when the components overlap spec-
trally as in the cochannel problem or when one of them is much
stronger than the others as in the near-far problem, existing demod-
ulation algorithms encounter singularity problems and are unable to
effect signal separation and demodulation [6].

Chirps are a particular category of non-stationary signals and ex-
hibit a very specific type of time-frequency coupling. The multi
angle-centered discrete fractional Fourier transform (MA-CDFRFT)
approach developed in [1] was shown to be a useful time-frequency
analysis tool for signals with this form of time-frequency coupling.
The associated chirp rate versus frequency representation of the MA-
CDFRFT is meaningful in the context of chirps because of its capa-
bility to concentrate linear chirps in a few coefficients [1]. Empirical
expressions that relate the chirp rate and center frequency of each
component to the coordinates of the peaks of the MA-CDFRFT were
discussed in [1]. The MA-CDFRFT based analysis technique has
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been further been successfully applied towards the demodulation of
multicomponent FM signals in [5]

In this paper, we extend the application of the MA-CDFRFT de-
modulation approach presented in [1, 5] to the case of cochannel
FM signals with identical carrier frequencies. This was not possi-
ble with the PASED algorithm [6] that required distinct periodicities
for the components. We further consider the problem of demodulat-
ing cochannel CPM signals [7] with rectangular, triangular, or trape-
zoidal pulse shaping functions, where the underlying multicompo-
nent chirp model directly applies and demonstrate that significantly
lower symbol error probabilities than that of BPSK in AWGN are
achievable when employing instantaneous frequency (IF) based de-
tection.

2. SIGNAL MODEL AND THE MA-CDFRFT

Multicomponent linear chirp signals are signals of the form:

x[n] =

K∑

i=1

Ai cos

(∫ n

0

Ωi[m]dm + θo

)
, (1)

where the instantaneous frequency (IF) of the ith component is given
by:

ωi[n] = ωci + cri

(
n − N − 1

2

)
, 0 ≤ n ≤ N − 1, (2)

and ωci, cri are the corresponding carrier frequency and chirp rate
of the ith component.

Towards analysis of these signals we employ the centered discrete
fractional Fourier transform (CDFRFT) [1]:

Aα = W
2α
π = VGΛ

2α
π VT

G, (3)

where VG is the matrix of Grünbaum eigenvectors of the centered

DFT matrix W, and Λ
2α
π is a diagonal matrix with the fractional

powers of the eigenvalues of W. The multi-angle version of the CD-
FRFT [1] is expressed as:

Xk[r] =

N−1∑

p=0

zk[p]e−j 2π
N

pr,

zk[p] = vkp

N−1∑

n=0

x[n]vnp (4)
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N = 256, NCS = 0, CR/FD = 1.49, FFT SIZE = 256
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Fig. 1. Angular zooming and the CZT : (a) full spectrum MA-CDFRFT of a two component cochannel chirp signal, (b) corresponding half
spectrum MA-CDFRFT, (c) quarter spectrum MA-CDFRFT.

and vkp denotes the p-th component of the k-th eigenvector. It was
also shown in [1] that one obtains an impulse-like transform anal-
ogous to what the DFT produces for sinusoids. The chirp rate and
center-frequency estimates of the MA-CDFRFT are obtained via:

cr = 2
tan(αp − π/2)

N
+ 1.41

(αp − π/2)

N
,

ωo = ωp + 0.85(α − π/2)3, (5)

αp and ωp are the angle and frequency coordinates of the MA-
CDFRFT spectral peak. In this paper, the FFT, the key ingredi-
ent of the MA-CDFRFT approach, is implemented with the chirp
Z-Transform (CZT) [4] enabling the MA-CDFRFT matrix to zoom
into an angular region of interest. Using the CZT version of the
MA-CDFRFT affords us two options: (a) reducing the search area
for peaks and the associated computational complexity, (b) or im-
proving the resolution of the underlying carrier frequency and chirp
rate estimators of the MA-CDFRFT and a accompanied reduction of
the associated IF demodulation error.

To study the performance of the MA-CDFRFT based approach for
cochannel FM demodulation, we shall adopt the performance met-
rics used in [6] for brevity sake. Specifically we use the normalized
carrier separation (NCS) parameter as a measure of spectral sepa-
ration and the mean power ratio (MPR) parameter to measure the
relative power between components. Towards avoiding aliasing, we
restrict the component chirp rates to be small in comparison to the
carrier frequency, i.e., large CR/IB and CR/FD ratios [6].

3. COCHANNEL FM DEMODULATION

Significant spectral overlap exists between the components of a mul-
ticomponent AM–FM signal in the cochannel regime and as de-
scribed in [6], a situation where existing multicomponent AM–FM
demodulation approaches fail. In this regime, the separation be-
tween the carrier frequencies are less than 25% of the RF band-
width. The problem of demodulating cochannel FM signals with
periodic instantaneous frequencies was described in [6], where DC
value constraints on the components were incorporated into a matrix
framework to recover information lost at the common harmonics.
Although the PASED approach in [6], is able to demodulate FM sig-
nals where the carrier frequencies are very close, it still requires the
carrier frequencies to be distinct and further requires the periodic ex-

tension of the components. In this paper, we focus on the case where
the carrier frequencies of the components are identical.

3.1. Synthetic Signals

The effectiveness of the MA-CDFRFT approach towards cochannel
FM demodulation can be illustrated by first looking at a synthetic
example in the cochannel regime of parameters [6]. Consider the
two component sinusoidal chirp example, where NCS = 0, CR/FD
= 2.19, 3.75 and MPR = 0 dB. Fig. 2(a) depicts the composite chirp
signal, while Fig. 2(b) depicts the magnitude of the MA-CDFRFT,
and Fig. 2(c) describes the estimated IF’s using the MA-CDFRFT
and the original IF’s. Note that even though the carrier frequencies of
the components are identical, the chirp rates are different, enabling
the MA-CDFRFT approach to accomplish demodulation and is in
contrast to the PASED approach in [6] that is unable to deal with
this situation. Note further that the demodulation is accomplished in
the pass-band rather than shifting the signals to baseband.

The above example is significant in that it illustrates the fact that
the proposed approach: (a) is able to deal with the difficult situations
where the component IF’s overlap or intersect, where all other chirp
demodulation approaches develop singularity problems and fail [6],
(b) is also able to accomplish harmonic reassignment at the IF cross-
over point, a task other multicomponent demodulation algorithms
are unable to perform1. While we have restricted our investigation to
cochannel chirp signals, the MA-CDFRFT can accommodate more
general pulse shaping functions also [5].

When one or more components of the composite chirp signal are
much stronger than the others then this situation will manifest as
a singularity problem in the eventual demodulation of the weaker
component’s. This situation that occurs in wireless communications
is referred to as the near-far problem or capture effect and trans-
lates to a larger value for the MPR parameter. The efficiency of
the proposed demodulation approach w.r.t. MPR is directly related
to the efficiency of the constituent center-frequency and chirp-rate
estimators. Fig. 5(a,b) depicts the normalized MSE of the center
frequency and chirp rate estimates of the weaker component. Per-
formance analysis of the MA-CDFRFT approach for different MPR
parameters indicate that the approach has a 12dB threshold, above
which the approach fail’s to detect the weaker component.

1A survey of existing multicomponent AM–FM demodulation approaches
is done in [6], where the complexity of the cochannel problem is described.

536



MA−CDFRFT OF THE SIGNAL

INDEX (FREQUENCY)

IN
D

E
X

 (A
N

G
LE

)

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

(a)
0 20 40 60 80 100 120 140 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TIME SAMPLES

N
O

R
M

A
LI

ZE
D

 F
R

E
Q

U
E

N
C

Y

N = 160, NCS = 0, CR/FD = 2.19, 3.75, MPR = 0dB

IF1
IF2
IF1−MACDFRFT
IF2−MACDFRFT

(b)

Fig. 2. Co-channel problem: (a) composite signal,(b) magnitude of the corresponding MA-CDFRFT using 160-pt FFT’s, and (c) estimated
normalized IF’s using the MA-CDFRFT approach, where solid lines are estimates and dashed lines are actual quantities.
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Fig. 3. Effect of MPR: (a,b) comparison of the normalized MSE of the center-frequency and chirp-rate estimates of the weaker component
for different MPR parameters in the cochannel range.

3.2. Application to Cochannel CPM Demodulation

Continuous phase modulation (CPM) signals find widespread use
in wireless communications due to their spectral efficiency and effi-
cient modulator and demodulator implementations [3]. The demod-
ulation approach that is optimal for CPM signals in AWGN is max-
imum likelihood sequence detection implemented via the Viterbi al-
gorithm. The complexity of this approach is however, exponential
in terms of the number of states, channel memory, and the number
of users. Several other sub-optimal variations of this detector and
other CPM demodulation algorithms were discussed in [3, 7]. For
the sake of analysis, we restrict our analysis to rectangular, triangu-
lar, or trapezoidal pulse-shaping functions p(t) with a duration of L
symbol periods and binary PAM symbols a[k] ∈ {−1, 1}. This is
so that the chirp signal model discussed before directly applies and
smaller symbol error probabilities (SEP) can be attained.

The IF signal in the model takes the form:

ωi(t) = ωc + 2πh

∞∑

k=−∞
a[k]p(t − kTb), (6)

where ωc is the carrier frequency and h is the modulation index of

CPM. The phase deviation from the carrier phase is given by:

φdev(t; a) = 2πh
∞∑

k=−∞
a[k]q(t − kTb), (7)

where q(t) =
∫ t

0
p(τ)dτ corresponds to the phase pulse shaping

function. The CPM signal is then obtained via frequency modula-
tion:

r(t) = A cos

(∫ t

−∞
ωi(τ)dτ + θo

)
.

Using a pulse shaping function of duration larger than a symbol pe-
riod introduces memory into the modulation scheme (LREC-CPM).
In this paper, we will focus our attention on the memoryless case
with L = 1, i.e., (1REC/TRI-CPM). Specifically CPM with a rect-
angular pulse of one symbol duration (1-REC-CPM) is equivalent
to continuous phase frequency shift keying (CPFSK). Another form
of CPM, minimum shift keying (MSK), is equivalent to 1-REC-CPM
with h = 0.5, while GMSK can be put into the CPM framework
with a Gaussian pulse function [2].

Now let us look at a two-component cochannel example where
one of the components has 1-REC-CPM and the other has 1-TRI-
CPM with a modulation parameter of h = 0.04. The carrier frequen-
cies of both components are identical. Fig. (4)(a) depicts the com-
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Fig. 4. Cochannel CP-FSK demodulation: (a) instantaneous frequency estimates of the MA-CDFRFT based approach, where solid lines
represent estimates and dashed lines are actual quantities, (b) symbol error probabilities in AWGN for the components obtained after averaging
over 100 experiments.
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Fig. 5. Three component example: (a) composite three-component CPM signal, (b) instantaneous frequency estimates of the MA-CDFRFT
based approach, where solid lines are estimates while dashed lines are actual quantities, (c) symbol error probabilities for the components.
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posite CPM signal. Fig. (4)(b) describes the IF estimates of the MA-
CDFRFT approach for either component, where in the absence of
noise, we obtain zero frequency demodulation error. Fig. (4) depicts
the SEP’s of each component in relation to BPSK-AWGN, obtained
by averaging over 100 experiments. The MA-CDFRFT approach
is able to attain significantly lower SEP’s in comparison to BPSK-
AWGN and demonstrates the ability of this approach to accomplish
complete demodulation even in the difficult cochannel case where
the component spectra completely overlap. The performance of the
approach for the case where there are three components2 with rect-
angular, triangular, and trapezoidal IF’s indicates that there is very
little difference in the performance of the algorithm in comparison
to the two component case, as illustrated in Fig. (5), as long as the
FFT size used to estimate the center-frequencies and the chirp rates
is sufficient to resolve their corresponding MA-CDFRFT peaks.

4. CONCLUSION

We have investigated the utility of a recently proposed multicompo-
nent chirp demodulation approach based on the MA-CDFRFT to-
wards the goal of cochannel FM demodulation. The proposed ap-
proach was shown to be particularly effective in the cochannel and
near-far scenarios where existing multicomponent AM–FM demod-
ulation approaches are known to fail. The MA-CDFRFT approach
was also able to handle the difficult case where the carrier frequen-
cies are identical, which the PASED algorithm [6] is unable to han-
dle. Upon application to the problem of demodulating cochannel
CPM signals, it was shown to yield significant improvement in the
symbol error probability, when a rectangular, triangular, or trape-
zoidal pulse shaping function was employed.
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