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Abstract— It has been previously demonstrated that it is
possible to perform remote vibrometry using synthetic aper-
ture radar (SAR) in conjunction with the discrete fractional
Fourier transform (DFrFT). Specifically, the DFrFT estimates the
chirp parameters (related to the instantaneous acceleration of a
vibrating object) of a slow-time signal associated with the SAR
image. However, ground clutter surrounding a vibrating object
introduces uncertainties in the estimate of the chirp parameter
retrieved via the DFrFT method. To overcome this shortcoming,
various techniques based on subspace decomposition of the SAR
slow-time signal have been developed. Nonetheless, the effective-
ness of these techniques is limited to values of signal-to-clutter
ratio ≥5 dB. In this paper, a new vibrometry technique based
on displaced-phase-center antenna (DPCA) SAR is proposed.
The main characteristic of a DPCA-SAR is that the clutter
signal can be canceled, ideally, while retaining information on
the instantaneous position and velocity of a target. In this paper,
a novel method based on the extended Kalman filter (EKF) is
introduced for performing vibrometry using the slow-time signal
of a DPCA-SAR. The DPCA-SAR signal model for a vibrating
target, the mathematical characterization of the EKF technique,
and vibration estimation results for various types of vibration
dynamics are presented.

Index Terms— Clutter cancellation, discrete fractional Fourier
transform (DFrFT), displaced-phase-center antenna (DPCA),
extended Kalman filter (EKF), ground moving target indicator,
micro-Doppler, synthetic aperture radar (SAR), vibrometry.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a ubiquitous coherent
imaging radar that generates high-resolution images. SAR

operates by illuminating the target scene with electromagnetic
pulses, typically in the microwave band, and measures the
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amplitude and phase of the return signal. After substantial
signal processing of the collected data, the final product is
a 2-D image, where each pixel in the image represents the
reflectivity of a region at the transmitted frequency [1]. The
relatively long wavelengths, compared with those of optical
sensors, make SAR systems capable of remote imaging over
thousands of kilometers regardless of weather conditions.
The typical range of these systems can be anywhere from
25 km for the Lynx radar [2] to well over 800 km for the
RADARSAT-2 [3]. These SAR-collection platforms can gen-
erate images at a variety of resolution scales. For example,
the Lynx radar has the ability to generate 0.1-m (4-in) resolu-
tion images [2].

For common imaging applications, a typical airborne SAR
platform illuminates the ground scene for at least several sec-
onds to create a single SAR image. During the data-collection
process, the image formation algorithm, often the polar-format
algorithm, assumes all targets in the ground scene are static.
This assumption makes SAR particularly sensitive to low-
level target vibrations [4]–[11]. More specifically, ground
target vibrations introduce a phase modulation, termed the
micro-Doppler effect [8], into each returned SAR signal. Any
vibrating target, with a strong radar cross section relative to its
surroundings, will produce observable artifacts in the image
called ghost targets. These ghost targets degrade the image
quality. An example of these ghost targets is shown in Fig. 1.
On the other hand, while ground target vibrations may intro-
duce distortion in some regions of a SAR image [4], [8],
they contain vital information about the frequency and ampli-
tude of the vibration of a target. In turn, the vibration history,
if reliably detected, can aid the identification of the targets
imaged.

Previously, a vibration-estimation technique was introduced
based on the discrete fractional Fourier transform (DFrFT)
applied to the slow-time SAR signal, which is extracted from
the complex SAR image [12]–[15]. It has been shown that
the DFrFT method can accurately estimate the instantaneous
acceleration of a point target when the vibration of inter-
est occurs in the range direction [12]–[15]. In these cases,
the micro-Doppler effect manifests itself as an instantaneous
linear chirp in the SAR slow-time signal [12]–[15].

While the DFrFT is an effective remote vibration-estimation
tool, the reliability of its estimates is adversely affected by the
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Fig. 1. SAR image that was generated by the GA-ASI Lynx SAR in
collaboration with the University of New Mexico for various vibrometry
experiments. Located in the bottom-right part of the image is a vibrating
corner reflector with a lateral length of 0.53 m. This target had a vibration
amplitude in the range direction of 1.5 cm and a vibration frequency of 0.8 Hz.
The ghost targets are spread in azimuth at the same range line. The other three
bright spots in the image are static corner reflectors.

ground clutter surrounding the vibrating target, e.g., requiring
SAR images with signal-to-clutter ratio (SCR) ≥15 dB [16].
In order to overcome this shortcoming, clutter rejection tech-
niques, based on decomposition of the SAR slow-time signal
into subspaces, have been developed [16], [17]. By employing
these techniques, the DFrFT can produce reliable estimates of
the vibrations of targets in environments with SCR ≥5 dB [17].
To the best of our knowledge, there is no vibration-estimation
technique based on SAR imaging that works reliably for high-
clutter environments, i.e., ≤5 dB. Fortunately, there is an
alternative radar-sensing technique, based on displaced-phase-
center antenna (DPCA) systems, that is intrinsically insensitive
to ground-field clutter.

The DPCA systems, normally utilized for ground moving
target indication (DPCA-GMTI), have been shown to be capa-
ble of determining the position and velocity of a moving target
in a high clutter environment [3]. In fact, in a DPCA-GMTI
system, the return of all the static objects in the scene can be
canceled by properly processing the return signals acquired
by the fore-antenna and the aft-antenna. Typically, the data
collection process of a DPCA-GMTI system lasts fractions of
seconds, but in a SAR, it may last several seconds or more.
Therefore, in order to have the Doppler resolution of a
SAR image with the clutter suppression capability offered
by the DPCA-GMTI system, this paper proposes performing
DPCA-GMTI using SAR. The acronym DPCA-SAR is used
to represent this process. A DPCA-SAR can be seen as a
single-pass collection platform where, in effect, two SAR
images, having only a temporal separation, are combined to
provide a ground moving target indicator system. A notable

Fig. 2. Data-collection geometry of the DPCA-SAR operating in ping-pong
mode. The baseline, B , is defined as the distance between the fore-antenna
and the aft-antenna. The aft-antenna collects the data from the same points
as the fore-antenna with a time delay of τB = B/Va.

advantage over spotlight-mode SAR is that DPCA-SAR sys-
tems are robust for detecting moving targets in high clutter
environments, since the ground clutter can be completely
removed from the SAR images captured by the two anten-
nas. Thus, DPCA-SAR is a particularly appealing platform
for SAR vibrometry. In fact, DPCA and other multichannel
techniques for detecting vibrating targets have been previ-
ously reported and their ability to suppress stationary clut-
ter is well established [18]–[21]. Herein we proceed with
DPCA-SAR for clutter suppression, choosing it for its simplic-
ity and effectiveness. However, while DPCA-SAR is robust in
high clutter environments, the process of combining the two
images to remove the static background (clutter) also removes
the instantaneous linear chirp of the SAR slow-time signal.
Without this linear chirp characteristic, the DFrFT cannot be
utilized for performing vibrometry. Therefore, an alternative
vibrometry technique is required for a DPCA-SAR platform.
In this paper, a vibrometry technique based on the extended
Kalman filter (EKF) is developed for DPCA-SAR.

The rest of this paper is organized as follows. In Section II,
the signal model for the DPCA-SAR system is defined.
In Section III, an existing vibrometry technique for
DPCA-SAR is presented. In Section IV, the proposed EKF-
based vibrometry technique for the DPCA-SAR system is
developed. In Section V, a refinement of the EKF-based
vibrometry technique for noise immunity is introduced.
In Section VI, simulations and results of the improved
EKF-based vibrometry method are discussed. Finally, the con-
clusions of this paper are presented in Section VII.

II. SIGNAL MODEL FOR DISPLACED-PHASE-CENTER

SYNTHETIC APERTURE RADAR

Fig. 2 shows the data-collection geometry of a
DPCA-SAR operating in ping-pong mode [22]. The
baseline, B, is defined as the along-track spacing between the
fore-antenna and the aft-antenna on the collection platform.
Conceptually, in a ping-pong mode, the fore-antenna collects
data at a given location u∗, while the aft-antenna is OFF.
The aft-antenna collects at the same location, u∗, while
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the fore-antenna is OFF. The time delay between the data
collection of the two antennas is τB = B/Va , where Va is the
average antenna speed. This process repeats for the duration
of the entire synthetic aperture. In this model, clutter is
defined as any other target illuminated in the ground scene.
For a particular range line, the slow-time signal of the clutter
collected by the fore-antenna can be written as

c1(τ ) =
∑

i

σ i exp
[
− jky yiτ − j

4π
λ

ri + jφi

]
(1)

where σ i , yi , ri , and φi are the average reflectance, azimuthal
position, range, and initial phase of the i th scatterer, respec-
tively. The wavelength and carrier frequency of the sent pulse
are λ and fc, respectively. The slow time is τ = u/Va , and
ky is a scaling parameter

ky ≈ 4π fcVa

cR0 fprf
(2)

where c is the propagation speed of the sent pulse, R0 is the
distance from the scene center to the midaperture, and fprf
is the pulse-repetition frequency (PRF). Assuming that the
ground clutter is static and since the aft-antenna is illuminating
the ground scene from the same location as the fore-antenna,
the clutter signal will remain constant at every collection
point u∗ throughout the entire synthetic aperture. Therefore,
for the same given range line, the slow-time signal of the
clutter collected by the aft-antenna is the same clutter signal
collected by the fore-antenna with a known time delay, τB

c2(τ ) = c1(τ − τB)

=
∑

i

σ i exp
[
− jky yi (τ − τB) − j

4π
λ

ri + jφi

]
. (3)

Now consider a single vibrating target at a given range line.
The slow-time signal from a vibrating target collected by the
fore-antenna is

d1(τ ) = σ v exp
[
− jky yvτ − j

4π
λ

xv (τ ) + jφv

]
(4)

where σ v , yv , and xv (τ ) are the average reflectance, average
azimuthal position, and displacement of the vibrating target,
respectively. Consequently, the slow-time signal from the
vibrating target collected by the aft-antenna, d2(τ ), is

d2(τ ) = σ v exp
[
− jky yv (τ − τB) − j

4π
λ

xv (τ ) + jφv

]
. (5)

The first phase term of d2(τ ) is − jky yv (τ − τB), as shown in
the case of clutter. However, the second phase term of d2(τ )
remains the same as that for d1(τ ) because the aft-antenna
also observes the instantaneous vibration displacement xv (τ )
at time τ . In summary, the two slow-time signals collected
by the fore-antenna and the aft-antenna, from a ground scene
containing a single vibrating target in clutter, can be written as

s1(τ ) = d1(τ ) + c1(τ ) + w1(τ ) (6)

and

s2(τ ) = d2(τ ) + c2(τ ) + w2(τ ) (7)

where d1 and d2 represent the signals from the vibrating target,
c1 and c2 represent the clutter signals, and w1 and w2 represent
the additive noise due to electronic error and quantization
error, etc. Just as in the signal model for spotlight SAR
mode [12], w1 and w2 are modeled as zero-mean circularly
symmetric complex-valued white Gaussian (ZMCSCG) noise.

Recall that the clutter signal collected by the fore-antenna
is the same as the clutter signal collected by the aft-antenna
separated by a time delay, τB , namely, c2(τ ) = c1(τ − τB).
Hence, by taking the difference of the signals collected by the
two antennas at the same collection location u∗, the clutter
signal is totally removed, and as a result, the difference signal
is modulated by the vibration dynamics in a nonlinear manner.
The difference signal, s(τ ), which we call the DPCA signal
of interest (SoI), is given by

s(τ ) = d2(τ + τB) − d1(τ ) + w2(τ + τB) − w1(τ ). (8)

The operation represented by (8) is the DPCA technique [23].
In real-world applications, the removal of the clutter signal
is subject to the noise floor of the DPCA-SAR system [23].
If we define the difference signal from the vibrating target as

d(τ ) = d2(τ + τB) − d1(τ ) (9)

and the residual clutter noise as

w(τ ) = w2(τ + τB) − w1(τ ) (10)

the DPCA-SAR SoI can be recast succinctly as

s(τ ) = d(τ ) + w(τ ). (11)

In practice, the residual-clutter noise term may also include
a portion of the clutter signal that is not canceled due to
the incoherence between the signals collected by the fore-
and the aft-antennas. For a typical DPCA-SAR collection
platform, τB is no more than a few milliseconds. If τB is
much shorter than the duration of the vibration of interest, then
the instantaneous vibration displacement can be approximated
linearly as

xv (τ + τB) ≈ xv (τ ) + Vv (τ )τB (12)

where Vv (τ ) is the instantaneous vibration velocity. With this
assumption, d(τ ) can be expressed as

d(τ ) ≈ 2σv (τ ) sin
(

2πτB Vv (τ )

λ

)

× exp
[
− j

2π
λ

(2xv (τ ) + τB Vv (τ )) − j
π

2

]
(13)

where

σv (τ ) = σ v exp[− jky yvτ + jφv]. (14)

For a simple point target, the value of σv (τ ) is simply
the scaled pixel value in a complex SAR image, where σ v

corresponds to the pixel magnitude and φv corresponds to the
pixel phase. The slow-time signal, s(τ ), collected by the SAR
platform is automatically sampled with the PRF. Therefore,
the observed DPCA-SAR SoI can be written in discrete time
as

s[n] = d[n] + w[n], n = 1, . . . , N (15)
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and

d[n] = 2σv [n] sin
(

2πτB Vv [n]
λ

)

× exp
[
− j

2π
λ

(2xv[n] + τB Vv [n]) − j
π

2

]
(16)

where

σv [n] = σ v exp[− jky yvn + jφv ] (17)

and N is the total number of the observed signal samples. The
sampling interval, &t , is the pulse-repetition interval (PRI)
of the SAR system. The signal-to-noise ratio (SNRres) of the
DPCA-SAR SoI is defined as

SNRres = 10 log10

(
σ 2

v

σ 2
w

)
(18)

where σ 2
w is the variance of the residual clutter noise w[n].

There are two major differences between the DPCA-SAR
SoI shown in (15) and the SoI of a common SAR system (see
[12, eq. (9)]). First, both the magnitude and phase of d[n] in
the DPCA-SAR SoI are nonlinearly modulated by the vibra-
tion dynamics. However, only the phase of d[n] in the SAR
SoI is linearly modulated by the vibration displacements. The
DFrFT-based method is applicable only when the magnitude
of d̃[n] remains the same (or changes very slowly compared
with the vibration) [12], [16], [24]. This is not the case for
the DPCA-SAR SoI because the magnitude of d[n] in the
DPCA-SAR SoI changes as fast as the vibration velocity.
Therefore, the DFrFT-based method is generally not applicable
to the DPCA-SAR SoI. Second, the clutter signal is removed
entirely from the DPCA-SAR SoI, while the SAR SoI suffers
from the clutter signal. Because the DPCA-SAR SoI is only
corrupted by additive noise as the clutter signal is removed,
one can apply general signal estimation methods to the
DPCA-SAR SoI for extracting xv [n] and Vv [n]. In this paper,
these vibration dynamics are estimated from the DPCA-SAR
SoI using a method based on the EKF. To achieve this, the EKF
method must exploit the information contained in both the
envelope and the phase of the DPCA-SAR SoI.

III. EXISTING VIBROMETRY TECHNIQUE FOR DISPLACED-
PHASE-CENTER ANTENNA SYNTHETIC

APERTURE RADAR

The robustness of DPCA-SAR in high clutter environ-
ments makes this radar configuration highly attractive for
vibrometry applications. In the case when the vibration of the
target is produced by a single-component sinusoidal function,
the problem of estimating its frequency is relatively simple.
In this case, the magnitude of the DPCA-SAR SoI can be
used to estimate the vibration frequency. This is what we
present below as the magnitude method. However, while this
straightforward approach is simple, it is unlikely to be optimal
because it utilizes only partial information (i.e., the envelope)
of the DPCA-SAR SoI to conduct the estimation. Furthermore,
this technique is not appropriate for complex vibrations.

A. Magnitude Vibrometry Method

From (16), the magnitude of d[n] can be written as

|d[n]| = 2σ̄v

∣∣∣∣sin
(

2πτB

λ
Vv [n]

)∣∣∣∣. (19)

The instantaneous velocity Vv [n] of a single-component vibra-
tion can be parameterized as

Vv [n] = Mv cos(2π fv&t n + ψv ) (20)

where Mv is the magnitude of velocity, fv is the frequency of
the vibration, and ψv is the initial phase. We assume that

Mv ≤ λ

4τB
(21)

or equivalently

−π
2

≤ 2πτB

λ
Vv [n] ≤ π

2
. (22)

In this case, there is a one-to-one mapping from Vv [n] to |d[n]|
when Vv [n] > 0, and there is the same one-to-one mapping
from −Vv [n] to |d[n]| when Vv [n] < 0. This implies that
|d[n]| repeats itself twice as fast as Vv [n]. As such, |s[n]| also
repeats itself twice as fast as Vv [n] modulo the interference
from the additive noise. Provided that the SNRres is sufficiently
high, fv can be estimated as a half of the frequency of |s[n]|.

The magnitude of velocity of low-level vibrations is usually
small. For instance, the magnitude of velocity of a 2-mm
10-Hz vibration is approximately 0.13 m/s. On the other hand,
the upper bound, λ/4τB , in the right-hand side of (21) is more
than 1 m/s for typical SAR systems. Therefore, the constraint
in (21) will be generally satisfied for the low-level vibrations of
interest. In the extreme case where Mv > λ/4τB , the mapping
from Vv [n] to |d[n]|, for either Vv [n] > 0 or Vv [n] < 0 cases,
is no longer bijective. As a consequence, harmonic frequencies
of fv appear in the spectrum of |d[n]| that cause ambiguity
in estimating the vibration frequency.

The magnitude method is generally not applicable to mul-
ticomponent vibrations. For instance, we can write |d[n]| for
a two-component vibration as

|d[n]| = 2σ̄v | sin(k1v1[n] + k2v2[n])| (23)

or equivalently

|d[n]| = 2σ̄v | sin(k1v1[n]) cos(k2v2[n])
+ cos(k1v1[n]) sin(k2v2[n])| (24)

where k1 and k2 are known scalars, and v1[n] and v2[n] are
the instantaneous velocities of the two vibrating components.
According to (24), the relationship between the frequencies
of v1[n] and v2[n], on the one hand, and the frequencies of
|d[n]| on the other hand, is not trivial; therefore, the magnitude
method is not applicable in this case.

IV. PROPOSED VIBROMETRY METHOD BASED

ON THE EXTENDED KALMAN FILTER

To overcome the shortcomings of the magnitude vibrometry
method, an estimation tool, based on the EKF to estimate
the vibration dynamics by exploiting the full information
(both the envelope and the phase) of the DPCA-SAR SoI,
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is presented. As it will be shown in the following sections, the
EKF-based vibrometry technique is reliable not only for recov-
ering single component vibrations from DPCA-SAR images
but also for estimating complex vibrations (multicomponent
and time varying) from DPCA-SAR images.

A. One-Step State-Transition Model

Using the previously presented DPCA-SAR signal model,
it is possible to define a state vector as

Xn = (xv[n], Vv [n])T (25)

where n is each slow-time step. The state variables xv [n] and
Vv [n] are the instantaneous position and velocity, in the range
direction, of the vibrating target, correspondingly. Let Av [n]
denote the instantaneous acceleration of the vibrating target.
Then, the one-step state-transition model can be written as

Xn+1 = FXn + GAv [n] (26)

where

F =
(

1 τB
0 1

)
(27)

and

G = (0, τB)T . (28)

Consistent with the EKF setting, we assume Av [n] to be a
zero-mean white Gaussian process; this assumption is justified
in the next paragraph. Note that the state-transition model (26)
does not make any assumptions about the vibration behavior
of the vibrating target other than that it must obey Newton’s
laws of motion. Therefore, this model applies for complex
vibrations that increase or decrease in frequency during the
collection process.

We now justify the assumption on Av [n] using, for sim-
plicity, a single-component sinusoidal vibration. Note that the
acceleration signal, Av (τ ), in this case is of the form

Av (τ ) = Ad(2π fv )2 cos(ω0τ +)) (29)

where ω0 = 2π fv , with fv being a uniform random variable
in [0, fprf/2], ) is a uniform random variable in [−π,π],
and Ad is a uniform random variable in [0, dmax], with dmax
being the maximum amplitude of a measurable displacement.
The random variables fv , ), and Ad are assumed to be
independent. Next, it can be shown that the auto-covariance
function of Av (τ ) is given by

RAv Av (τ ) = d2
max(π fprf )3

30
sin(π fprfτ )

τ
. (30)

Therefore, since the sampling time is given by the PRI, and
τ = n&t = n/ fprf , (30) becomes a delta function. Thus,
it is not unreasonable to consider Av [n] as a zero-mean white
Gaussian process for a sinusoidal acceleration in the one-step
state-transition model (26). Note, however, if the range of fv
is not [0, fprf/2], then (30) will approximate a delta function.

B. Observation Model

For the DPCA-SAR system and the previous one-step state-
transition model, the observation model is given by

s[n] = d[n] + w[n]
≡ h(Xn) + w[n]. (31)

From (16), it is clear that d[n] (and therefore the observation
model) is nonlinear with respect to the state vector X. In the
EKF, the observation matrix Hn is defined as

Hn = ∇h |X=X̂n|n−1
(32)

where X̂n−1 is the estimation of Xn−1. As such, the linearized
observation model can be written as

s[n] = HnXn + w[n] (33)

where

Hn = (4κσ v sin(κτBX̂n−1(2))e j+n− jπ/2,

2κτBσ v cos(κτBX̂n−1(2))e j+n

− 2κτBσ v sin(κτBX̂n−1(2))e j+n− jπ/2) (34)

κ = 2π
λ

(35)

and

+n = −ky yvn&t + φv

−2π
λ

(
2X̂n−1(1) + τBX̂n−1(2)

)
− π

2
. (36)

In our formulation, it is assumed that the variance of the
noise w[n] is known. With the one-step state-transition model
given in (26) and the linearized observation model given
in (33), the Kalman filter described in [25] and [26] can
be used to estimate the vibration dynamics with an initial
condition. The solution to the vibration-estimation problem
using the Kalman filter is given as follows. We begin by
defining

s j
i = (s[i ], . . . , s[ j ])T , i < j and 0 ≤ i, j ≤ N. (37)

Next, let X̂n+1|n and X̂n|n be the predicted and corrected state
estimates, respectively. Then, the state estimates X̂n+1|n

.=
E[Xn+1 | sn

0 ] and X̂n|n
.= E[Xn | sn

0 ] are given recursively by

X̂n+1|n = FX̂n|n, n = 1, 2, . . . (38)

and

X̂n|n = X̂n|n−1 + Kn(s[n] − HnX̂n|n−1), n = 1, 2, . . . ,

(39)

with the initialization X̂0|−1 = E[X0]. (Here, E[U ] is the
expected value of the random variable U , and E[U |Z ] is
the conditional expectation of the random variable U given
the random variable Z .) In this paper, it is assumed that
any vibrating target has symmetrical displacements and veloc-
ities with respect its central position. Therefore, X̂0|−1 =
E[X0] = 0. The Kalman gain, Kn , is given by

Kn = !n|n−1HT
n
(
Hn!n|n−1HT

n + σ 2
w

)−1 (40)
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Fig. 3. Block diagram of the Kalman filter for vibration estimation in
DPCA-SAR. The variable s[n] is the DPCA-SAR SoI, Kn is the Kalman
gain, Hn is the linearized observation matrix, and F is the one-step state-
transition matrix.

where !n|n−1
.= Cov(Xn | sn−1

0 ) and HT
n is the transpose

of Hn . The covariance matrix, !n|n−1, can be computed jointly
with !n|n

.= Cov(Xn | sn
0 ) from the following recursion:

!n|n = !n|n−1 + KnHn!n|n−1, n = 1, 2, . . . (41)

and

!n+1|n = F!n|n + FT GQnHT , n = 1, 2, . . . (42)

with the initialization !0|−1
.= Cov(X0), where Qn is the

covariance matrix of the instantaneous vibration acceleration
Av [n]. Fig. 3 shows the block diagram of the Kalman filter
for the vibration estimation problem.

V. OBSERVATION NOISE IMMUNITY BY AVERAGING

OVER SEVERAL STATE ESTIMATES

A. Motivation

Recall that when the state-transition model was defined,
no assumptions were made about the vibration behavior of
the vibrating target other than it was obeying the classical
laws of motion. Defining the state-transition model in this
manner permits the vibration dynamics of the vibrating target
to change drastically between each slow-time step. However,
while it is not constrained in the state-transition model, it was
assumed that the PRI was significantly shorter than the period
of the vibration of interest. With this assumption, it is not
physically possible for the vibrating target to exhibit a drastic
change of position between each slow-time step. Therefore,
any nontrivial changes in the vibration dynamics of the vibrat-
ing target in the observed signal, s[n], between successive
slow time steps, are caused solely by the observation noise.
Since the state-transition model does not account for this and
since the observations are linearized at each slow-time step,
the standard implementation of the EKF is very susceptible
to observation noise. This susceptibility to noise can lead
to incorrect state-variable estimates and misleading vibration
behavior. If the observation noise is suppressed, the EKF
becomes much more accurate and stable.

It is widely known that the state estimates of the EKF may
diverge when the error covariance becomes significantly small.
In fact, some variations of the EKF have been developed
for compensating the uncertainties in the error covariance

introduced by the first-order linearization. One of the most
popular is the unscented Kalman filter (UKF) [27], [28].
The UKF was originally developed under the idea that the
linearization step of the EKF can produce a highly unsta-
ble filter if the assumptions of local linearity are violated.
Specifically, the UKF employs an unscented transformation
to estimate the statistics of the state variables as they pass
through the nonlinear system. In this way, the UKF produces
estimates of third-order accuracy while the EKF produces
estimates of first-order accuracy [28]. In contrast, in this paper,
we present a special modification to the EKF in order to reduce
the adverse effect of severe data variability on the piece-
wise-linear assumption. Specifically, in this paper, we average
the state estimates to produce more stable estimates, which,
in turn, is used in the computation of the linearized observation
matrix.

To motivate this averaging approach, consider the case of a
single static target. Each time the static target is observed,
the observation noise randomly places the target at the
incorrect position in the ground scene. If the static target
is repeatedly observed over an extended period of time,
each observation will create a set of different possible target
locations. This set of all observations will be a scattering of
locations, centralized and symmetric around the true target
location. The centralized and symmetric scattering of obser-
vations is because the noise is assumed to be ZMCSCG. As the
number of observations increases, the expected value of the set
of all the observations will approach the true target location.
Thus, resilience to noise is directly related to the number
of averaged state estimates. However, in this article, all the
targets of interest are vibrating. Thus, averaging over too many
state estimates while suppressing the noise will also suppress
the vibration behavior and only the average target position
will remain. Therefore, it is critical to average over as many
state estimates as possible to suppress the noise, while not
averaging over too many state estimates to ensure retention of
the vibration behavior of the target. An analytical expression
to determine the number of points to average over is developed
below.

If fv is the vibration frequency of the target of interest,
then 1/ fv is the time needed for a single complete vibration
cycle, or period, M is the number of averaged points for noise
suppression, and &t is the PRI. Then, the state estimates are
being averaged over the time interval, M&t . Taking the ratio
of these quantities gives the ratio of a single vibration that the
state estimates are estimated over

M&t
1
fv

= β. (43)

Setting β ≈ 0.125 ensures that the average is taken over at
most 1/8 of the vibrating period. Averaging over 1/8 or less of
the vibrating period appears to ensure the vibration dynamics
are not substantially suppressed. As can be seen in Section VI,
this rule holds for many different target dynamics: sinusoidal
and stationary vibrations, sinusoidal and linearly increasing
in frequency vibrations, and multicomponent sinusoidal vibra-
tions. While any β ≤ 0.125 is sufficient to retain the vibration
behavior, increasing the time of the averaging will increase the
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Fig. 4. Estimated position of a 1-mm 8-Hz vibrating target using the
EKF. The DPCA-SAR SoI was contaminated with ZMCSCG noise with an
SNRres of 15 dB. State-estimate averaging improves the estimated position of
the vibrating target significantly when using the EKF-based method. In this
example, the MSE is reduced by 34%.

Fig. 5. Estimated position of a multicomponent vibration. The components
are 1 mm, 5 Hz and 0.75 mm and 12 Hz. The DPCA-SAR SoI was
contaminated with ZMCSCG noise with an SNRres of 15 dB. State-estimate
averaging improves the estimated position of the vibrating target significantly
when using the EKF-based method. In this example, the MSE is reduced
by 76%.

noise immunity. Therefore, M should be as large as possible,
while ensuring β ≈ 0.125. This condition can be expressed
mathematically as

M = max
{

n ∈ N : n ≤ 0.125
&t fv

}
. (44)

Note that for a given vibration frequency, as the PRF increases
(i.e., &t decreases), the number of state estimates that can be
averaged, M , increases. Therefore, for a given target vibration
frequency and SNRres value, a higher PRF (low &t) increases
noise immunity. This is further discussed in Section V-D and
Fig. 7. An example of the improvement obtained using the
state-estimate averaging is shown in Figs. 4 and 5. As can
be seen in Figs. 4 and 5, the averaging technique drastically
improves the resemblance of the estimated instantaneous posi-
tion of the target with the ground truth. The introduction of
the state-estimate averaging method to the EKF is presented
in Section V-C.

B. Determining an Approximate fv A Priori
One of the potential stumbling blocks of the state-estimate-

averaging method is that it depends on having some prior
knowledge of the vibration frequency of the target of interest.
However, this is not an entirely unreasonable assumption. The
vibration dynamics of a target are dependent on the material,
geometry, and the machinery that is generating the vibrations.
For example, if a corporation does remote monitoring of its
own systems, it will have access to the material, geometry,
and the machinery that is generating the vibrations. Therefore,
a range of expected vibration frequencies will be known.
If fmax(v) is the maximum expected vibration frequency of
a given target, then (44) can be restated as

M = max
{

n ∈ N : n ≤ 0.125
&t fmax(v)

}
. (45)

In other scenarios, the geometry, material, and machinery
can be determined with other remote sensing techniques such
as optical, infrared, and multispectral, to name a few. There-
fore, in most cases, a maximum expected vibration frequency,
fmax(v), can be estimated.

C. Refinement of the EKF for Increased Noise Immunity

Since it is the effect of the observation noise in the EKF
model, rather than system noise, that is being mitigated
with the state-estimate averaging described in Section V-A,
the state-transition model, as defined in (26), remains
unchanged as this is an accurate description for the vibration
behavior. Any changes to the state-transition model in an
attempt to gain noise immunity would lead to an incorrect
state model. In addition, the observation model defined in (31)
remains unchanged as the DPCA-SAR collection platform
has a fixed imaging procedure that cannot be altered. The
modification occurs in the linearization of the observation
model, as it is the linearization that is susceptible to the
observation noise.

Let N1 be the total number of state estimates being aver-
aged, where N1 is determined by (44). Then, the observation
matrix, Hn , is now defined as

Hn = ∇h |X=X̂avg(n)
(46)

where

X̂avg(n) = X̂n|n−1 + X̂n−1|n−2 + · · · + X̂n−N1+1|n−N1

N1
. (47)

Here, the initialization of the state estimates is given by

X̂N1−1|N1−2 = · · · = X̂1|0 = X̂0|−1 = E[X0] = 0. (48)

This is the sole place in the EKF algorithm at which
state estimates averaging is used to provide noise immu-
nity. The rest of the EKF algorithm remains as defined
from (33) to (42).

D. Noise Requirements

One of the potential challenges when implementing the
EKF is that under certain conditions, the state estimations
provided through the EKF algorithm can diverge from the
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Fig. 6. Estimated position and estimated frequency of a 1-mm 8-Hz vibrating
target using the EKF. The DPCA-SAR SoI was contaminated with ZMCSCG
noise with an SNRres of 9 dB. Strong successive noisy observations cause
the Kalman gain to place unreasonable trust in the predicted state estimates
and not trust the observations.

TABLE I

PERFORMANCE LIMITS OF DPCA-SAR VIBRATION
ESTIMATION USING THE EKF METHOD

actual state variables. This divergence is typically caused by
the trace of the error covariance matrix becoming extremely
small. When the trace of the covariance matrix is very close
to zero, the Kalman gain places unreasonable trust in the state
prediction and ignores subsequent observations [29]. When
this occurs, the vibrational dynamics of targets cannot be
reliably determined. Therefore, for accurate vibrometry, it is
necessary to characterize the pervasiveness of this divergence
and to determine how to reduce the divergence to negligible
levels.

An example of what happens to the state estimate when
the estimated state-error-covariance matrix becomes unrealis-
tically small is shown in Fig. 6. It is clear that EKF no longer
trusts the observations and the state estimates are updated only
using the predictions from the state-transition model.

For the purpose of characterizing the reliability of the EKF
against residual clutter noise, the vibrating target is assumed
to have a steady (constant frequency) sinusoidal motion of
8 Hz with a 1-mm displacement. The system parameters
used for this characterization are described in Table II. With
these target dynamics, 1000 simulated slow-time DPCA-SAR
SoIs were generated. Each realization of the slow-time sig-
nal was corrupted with a ZMCSCG perturbation as residual
clutter noise. Then, the previously developed EKF-vibrometry
method was applied to each slow-time signal. If the EKF-

TABLE II

DPCA-SAR SYSTEM PARAMETERS USED IN SIMULATIONS

Fig. 7. Percentage of reliability in estimating the frequency of the vibrating
target within 1 Hz over 1000 SoI for a given residual SNRres value. The
vibrating target had a frequency of 8 Hz and a magnitude of 1 mm. As can be
observed, the proposed averaging technique drastically improves the reliability
of the EKF when 3 dB ≤ SNRres ≤ 11 dB.

vibrometry method estimated the frequency of the vibrating
target within an error margin of 1 Hz, then the estimation
was considered to be reliable or to have converged; otherwise,
the method was considered to have produced an unreliable
estimate or have diverged. The ratio of converging solutions
to the total number of slow-time SoI was taken as a reliability
indicator. This process was repeated for integer SNRres values
ranging from 1 to 15 dB. This entire procedure was done
with the averaging for noise immunity method and without
the averaging for noise immunity method. The results are
shown in Fig. 7. As can be observed, for a given level of
residual SNRres, the state-estimate averaging for noise immu-
nity increases the occurrence of converging solutions. For
example, when the SNRres is 8 dB, the percentage of diverging
solutions is approximately reduced from 80% to 25% when
employing the state-estimate-averaging technique. Therefore,
for the minimal computational effort, averaging provides not
only increased confidence in the vibration behavior but also
decreases the likelihood of a divergent solution when the
residual clutter noise exhibits SNRres < 15 dB. When the
SNRres exceeds 15 dB, the divergence of the estimates is no
longer a concern. In fact, the SNRres ≥ 15 dB requirement
is quite reasonable since values between 15 and 20 dB of
SNRres are typical thresholds for target detection in MTI
systems [30]. The performance limits of the proposed method
are summarized in Table I.
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E. Signal-to-Clutter Ratio
In a general sense, clutter can be defined as the collection

of all targets or objects that engender undesired reflections in
the returned radar signal. These undesired reflections often
degrade the performance of the radar system as the target
of interest cannot be separated from the background. Clutter
can be placed into one of two categories: surface clutter and
airborne clutter. Some examples of surface clutter include
vegetation, ground terrain, ocean surface condition, and jungle
canopies. Airborne clutter, sometimes termed volume clutter,
typically refers to rain, insects, or birds. In this paper, only
ground clutter is considered. Since a SAR is designed to be
an all-weather imaging system, the majority of airborne clutter
typically has minimal, and often negligible, effects on the
quality of the SAR image [31]–[33].

One of the distinct advantages of a DPCA-SAR system
is that it performs quite well when introduced into a high
clutter environment. In real-world applications, the removal
of the clutter signal is subject to the noise floor of the
DPCA-SAR system [23]. When the noise increases, residual
clutter (from imperfect noise cancellation) will be present.
However, this residual clutter will be indistinguishable from
the noise signal. This noise is generated from any incoher-
ence between the two antennas, in addition to the thermal
noise [34]. This incoherence is generated from a variety of
imperfections in the collection platform, as well as natural
background radiation.

One source that produces the stated incoherence is imper-
fections in the flight path due to turbulence. An irregular
flight path causes the aft-antenna to be in a slightly different
collection location than the fore-antenna. As a consequence,
the DPCA-SAR system is not capable of producing a per-
fect cancellation due to the differences in the clutter signals
collected by the two antennas. Typically on board a SAR
platform, there is a GPS as well as some type of inertial
measurement unit (IMU) or guidance system. These systems
track the position of the collection platform for the duration of
the flight. The GPS and IMU typically help to compensate for
the irregular flight path; however, their success is limited by
their own error margins [35]. Since turbulence can be viewed
as a random process and the GPS and IMU errors are random,
this incoherence can be viewed as noise.

A second source that causes incoherence is the inconsis-
tency between the fore- and aft-antennas. Any misalignment
in phase results in a corresponding range error. With the
same clutter signal mapped to a different range line for each
antenna, these clutter signals will not be removed in the
DPCA-SAR SoI. Since this phase error is due to real-world
system limitations, it is random and can also be viewed as
noise.

Therefore, even using adaptive correction techniques, as a
practical matter, the clutter can only be canceled down to the
noise level. Hence, the DPCA-SAR signal to residual-clutter
ratio (SCRres) is for all intents and purposes equivalent to the
SNRres. For vibrometry purposes, the effect of the residual
clutter on the DPCA-SAR signal may be worse than the effect
of the noise. However, the effect of the residual clutter cannot
be less significant than the effect of the noise.

Fig. 8. Absolute value of the DPCA-SAR SoI and its frequency spectrum
for a 1-mm 8-Hz vibrating target. The DPCA-SAR SoI was contaminated
with ZMCSCG noise with an SNRres of 15 dB. The vibration frequency can
be estimated directly from the spectrum of the DPCA-SAR SoI. In this case,
the 16-Hz peak indicates that the vibration frequency is 8 Hz.

VI. SIMULATIONS AND RESULTS

The presented EKF method has the ability to estimate
not only the vibration frequency, but can also determine the
instantaneous position and velocity of the vibrating target
during the collection process. Since the EKF method is not
restricted to a single-component sinusoidal vibration, it can
be used to recover complex vibration, including multicom-
ponent sinusoidal vibrations and vibrations with time-varying
characteristics. In this section, the EKF-based vibrometry tech-
nique is tested for different vibration dynamics. Specifically,
the vibration dynamics considered are a single-component
sinusoidal vibration, a linearly increasing (and decreasing)
frequency sinusoidal vibration, and a multicomponent sinu-
soidal vibration. For the case of a single-component sinusoidal
vibration, the results of the magnitude method are presented
for comparison. The vibrometry methods are validated by
simulating the DPCA-SAR SoI, as described by (16). It is
important to remember that the ground clutter present in
the SAR images (captured by both the aft- and the fore-
antennas) has been already suppressed in the DPCA-SAR SoI.
However, we do consider residual clutter noise clutter/noise in
the following simulations.

The simulated DPCA-SAR system is operating in the
Ku-band and the corresponding system parameters are listed
in Table II. These system parameters are chosen in part to
mimic the Lynx radar [2]. The baseline, B , and the platform
velocity, Va , are, however, typical values of a DPCA-SAR
system.

A. Simple Sinusoidal Vibration Simulation

The first set of simulations considers a vibrating target
whose displacement is described through a sinusoidal vibration
of constant frequency and constant amplitude. The target had
an 8-Hz oscillation with an amplitude of 1 mm (i.e., a velocity
of 50.26 mm/s). Figs. 8 and 9 show the results of applying the
magnitude method for estimating the instantaneous velocity
of the target. As can be observed in Fig. 8, the vibration
frequency is contained in the spectrum of the DPCA-SAR
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Fig. 9. Estimated velocity and estimated frequency spectrum of a 1-mm
8-Hz vibrating target using the magnitude method. The DPCA-SAR SoI was
contaminated with ZMCSCG noise with an SNRres of 15 dB. The recovered
waveform exhibits a frequency component of twice the value of the original
vibration.

Fig. 10. Estimated position and estimated frequency spectrum of a 1-mm
8-Hz vibrating target using the EKF. The DPCA-SAR SoI was contaminated
with ZMCSCG noise with an SNRres of 15 dB.

SoI at the double of the original frequency (i.e., a 16-Hz
component can be observed). Fig. 9 shows the velocity
waveform recovered by solving (19). As can be observed,
the recovered waveform exhibits the double of the frequency
of the original signal due to the effect of the absolute
value in (19). Meanwhile, Fig. 10 shows the results of the
EKF-vibrometry method estimating the position of a vibrating
target without using the state-estimate-averaging technique
described in Section V. As can be observed in Fig. 10,
the waveform recovered by the EKF-vibrometry method is
highly affected by the residual clutter noise. This issue is
addressed by applying the proposed state-estimate averaging,
as shown in Fig. 11. In this case, the state-estimate averaging
occurred over 10 consecutive terms. It is clear from Fig. 11
that the state-estimate average improves the position estimate
of the vibrating target and, consequently, produces a sharper
peak in the frequency spectrum of the estimated signal. In fact,
when analyzing the mean square error (MSE) of the estimated
position of the target, the first EKF method produces an MSE
of 0.2279 mm2 while the MSE of the modified method is
0.1503 mm2. Therefore, the modification improved the posi-
tion estimate of the vibrating target by 34%. Finally, it should
be noted that even though the magnitude method performs

Fig. 11. Estimated position and estimated frequency spectrum of a 1-mm
8-Hz vibrating target using the EKF. The DPCA-SAR SoI was contaminated
with ZMCSCG noise with an SNRres of 15 dB. The state estimates were
linearized over seven terms for noise suppression.

Fig. 12. Position estimation of a vibrating target with time-varying dynamics
using the EKF. The vibration frequency linearly increased from 10 to
17 Hz. The amplitude of the vibration was 1 mm. The DPCA-SAR SoI
was contaminated with ZMCSCG noise with an SNRres of 15 dB. The state
estimates were linearized over 10 terms for noise suppression.

well for a simple sinusoidal vibration, the algebraic solu-
tion becomes nontrivial as the vibration waveform increases
in complexity as is explained in Section III-A. Therefore,
the study cases shown next will not include this technique.

B. Sinusoidal Vibration With Linearly Increasing Frequency

The next simulation considers the case of a vibrating target
whose displacement is described through a sinusoidal vibration
that linearly increases in frequency throughout the duration
of the aperture. The target oscillations started at 10 Hz
and linearly increased to 17 Hz. The displacement of the
vibrating target was set to 1 mm. The position estimate for the
linear increasing vibration using the modified-EKF is shown
in Fig. 12. As in the previous case of a constant frequency
sinusoidal vibration, after about two complete oscillations,
the estimated target position converges to the true target
position.

C. Sinusoidal Vibration With Linearly Decreasing Frequency

In this case, we consider a vibrating target whose displace-
ment is described through a sinusoidal vibration that linearly
decreases in frequency throughout the duration of the aperture.
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Fig. 13. Position estimation of a vibrating target with time-varying
dynamics using the EKF. The vibration frequency linearly decreased from
16 to 8 Hz. The amplitude of the vibration was 1 mm. The DPCA-SAR SoI
was contaminated with ZMCSCG noise with an SNRres of 15 dB. The state
estimates were linearized over 10 terms for noise suppression.

Fig. 14. Position estimation of a vibrating target that exhibits a multicom-
ponent vibration using the EKF. No average of state estimates was employed.
The vibration frequencies are 5 and 12 Hz, and the vibration amplitudes are
1 and 0.75 mm, respectively. The DPCA-SAR SoI was contaminated with
ZMCSCG noise with an SNRres of 15 dB.

The target oscillations started at 16 Hz and linearly decreased
to 8 Hz. The displacement of the vibrating target was set
to 1 mm. The position estimation for the linear increasing
vibration using the modified-EKF is shown in Fig. 13. Similar
to the previous cases, after approximately two oscillations,
the estimated position of the vibrating target converges to the
true target position.

D. Multicomponent Vibration

Finally, we considered the case of a vibrating target whose
displacement is described as the sum of two sinusoids. The
first frequency component has a 5-Hz vibration frequency with
a displacement of 1 mm. The second frequency component has
a 12-Hz vibration frequency with a displacement of 0.75 mm.
The position estimation for the multicomponent vibration
without state-estimate averaging is shown in Fig. 14. The posi-
tion estimation for the multicomponent vibration with state-
estimate averaging is shown in Fig. 15. As can be observed
in Fig. 15, the state-estimate-averaging technique is required
for accurately estimating the position of the vibrating target.
Even with the additional vibration component, the estimated
position closely matches the true target position. Since the

Fig. 15. Position estimation of a vibrating target that exhibits a multicom-
ponent vibration using the EKF. Five state estimate terms were averaged.
The vibration frequencies are 5 and 12 Hz, and the vibration amplitudes are
1 and 0.75 mm, respectively. The DPCA-SAR SoI was contaminated with
ZMCSCG noise with an SNRres of 15 dB.

highest frequency component is 12 Hz, the state estimates
are averaged over five consecutive terms. For this scenario,
the modification of the EKF reduced the MSE of the estimated
target position by 76%.

VII. CONCLUSION

In this paper, a novel vibrometry technique for a
DPCA-SAR was presented. In contrast with the traditional
SAR-vibrometry, the proposed vibrometry technique takes
advantages of the DPCA-SAR signal model to remove all
the ground clutter by combining two SAR images. Therefore,
the proposed vibrometry technique can potentially recover the
vibration dynamics of a vibrating target in the presence of
heavy clutter. Specifically, the proposed vibrometry technique
employs an EKF for estimating the instantaneous position and
velocity of a target from a difference DPCA-SAR image. Since
this technique does not impose specific requirements on the
dynamics of the vibrations exhibited by a target, it can be
used to estimate complex vibrations such as multicomponent
sinusoidal vibrations and others with time-varying character-
istics such as increasing (and decreasing) chirped sinusoidal
vibrations. Furthermore, it has been demonstrated that the
implementation of a state-estimate-averaging technique in the
linearization step of the observation function of the EKF algo-
rithm produces a profound positive impact on the performance
of the vibrometry technique. In fact, the modification to the
EKF presented in this paper improves the position estimate
of the vibrating target by 34% when the SNRres is 15 dB for
a single-component vibrating target. For the multicomponent
vibrations, the MSE of the estimated target position is reduced
by 76% when the SNRres is 15 dB. Moreover, the state-
estimate-averaging technique augmented the reliability of the
estimates and decreased the likelihood of divergence of the
EKF solution for the position of the vibrating target. When
the SNRres is 8 dB, the percentage of diverging solutions is
approximately reduced from 80% to 25% when employing
the state-estimate-averaging technique. The next step for this
vibrometry technique is to collect and analyze airborne data
relevant to operational SAR systems such as, for example,
the Lynx SAR.
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