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Abstract—The Discrete Fractional Fourier Transform
(DFRFT) is a promising tool for multicomponent chirp
parameter estimation. Computation of this transform and its
chirp concentration properties are dependent on the basis of DFT
eigenvectors used in the computation. Several DFT-eigenvector
basis have been proposed for the transform and there is no
common framework for comparing them. Furthermore, the
analysis done in all prior work completely ignore the presence
of noise. In this paper, we compare different versions of the
transform using statistical consistency of the chirp parameter
estimators as the criteria. Their impact on estimation errors, is
evaluated by comparing them to the Cramer-Rao lower bound,
with both conventional and recent super-resolution subspace
extensions of the technique.

Keywords: Discrete Fractional Fourier Transform, chirp pa-
rameter estimation, peak to parameter mapping, consistency
criteria, subspace techniques.

I. INTRODUCTION

The Fractional Fourier Transform (FrFT) is a rotational
generalization of the traditional Fourier Transform [1]. The
eigenfunctions of the continuous FrFT are the Gauss-Hermite
(G-H) functions, which result in a kernel composed of chirps.
Consequently the application of the FrFT to a chirp results in
an impulse at a specific angle and location corresponding to
its chirp rate and center frequency, as given by closed-form
equations. This has motivated research into discrete versions
of the transform which can be used for chirp parameter
estimation.

Discrete versions of the FRFT have been developed by
several researchers and can be put into the general form [2]:

Xa = W
2a
π x = VΛ

2a
π VTx, (1)

where W is a DFT matrix, V is a matrix of DFT eigen-
vectors and Λ is a diagonal matrix of DFT eigenvalues. This
requires the furnishing of a full basis of DFT eigenvectors:
V. However, there is no unique prescription for this basis,
leading to the many proposed forms. The search for DFT
eigenvectors has focused on using matrices that commute with
the DFT matrix and thus have the same eigenvectors. A matrix
found by Dickenson and Steiglitz (D-S) was investigated
first [3], followed later by a matrix found by Grünbaum
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Fig. 1. Expected Valid Mapping Region: Outside of the dashed re-
gion, the instantaneous frequency of chirps spills out of ω ∈ [−π, π],
so the Nyquist sampling theorem is not satisfied. Mappings are
generated for the region shown in grey.

[4]. Recently, another commuting matrix was proposed using
techniques developed for quantum mechanics in finite dimen-
sions (QMFD) [5]. Numerous other bases have also been
proposed by combining or adapting these. A fast algorithm
for computing the DFRFT using any of these approaches has
been outlined in [6]. The DFRFT is a promising tool for chirp
parameter estimation and vibration detection and estimation in
SAR applications [7].

All the proposed sets of eigenvectors for the DFrFT are
approximations of the G-H functions, and thus the application
of the DFrFT to a sampled chirp results in a strong peak in the
2D plane. However, unlike the continuous version, there are
no known closed-from solutions for the mapping between the
transform peak location and chirp parameters. Prior work has
assumed this mapping is a sampled version of the mapping
for the continuous FrFT, but this is only accurate for very
narrowband chirps, and not suitable for wideband signals.
Furthermore, performance analysis for existing DFRFT ap-
proaches has been done in the absence of noise.

In this paper, we compute the peak to parameter mappings
[8] associated with the three DFrFT bases, and in the process,
show that these mappings are considerably different from
each other. Furthermore, using statistical consistency related
criteria, we show that they are not invertible over the full range
of the transform. This leads to inconsistent estimates for chirp
parameters outside the invertible regions, where the estimation
error increases significantly. Finally, we evaluate the impact of
these criteria on the efficiency of chirp parameter estimates of
the different basis, by comparing the MSE of the approaches
to the Cramer-Rao lower bound.
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Fig. 2. Autocorrelation matrix eigenvalues: The eigenvalues of the autocorrelation matrix of projections of the MA-CDFrFT of a complex-
valued single-component noise-free chirp signals of length N = 256 for both the Grunbaum and QMFD basis. The autocorrelation matrix
is estimated using the pre-windowed padding option. The cross-hair subspace technique in conjunction with the QMFD approach produces
the largest separation between the signal and noise subspaces.

II. PEAK TO PARAMETER MAPPING

The chirp model used in this paper is formulated as:

s[n] = exp(j(α(n− (N − 1)/2)2 + ωn)) + w[n], (2)

where α is the chirp rate, ω is the center frequency, 0 ≤ n ≤
N − 1 and w[n] is additive Gaussian white noise.

To calculate the peak-to-parameter mappings, we generated
4N × 4N sample chirp functions evenly spaced in the range
α ∈ (0, π) and ω ∈ (−π/N, π/N), as shown in Fig. 3(a). The
peaks in the DFrFT for these chirps occur roughly between k
= N/4 to 3N/4 and r = N/2 to N, thus on average 64 chirps
mapped to each peak location in the transform.

Application of the DFrFT to chirp parameter estimation
is not meaningful if a complete analysis of the invertibility
of this mapping is ignored. Figure 3 (b,c,d) illustrates a
contour plot of the peak-to-parameter mapping for the different
transforms resulting from using the different eigenvector basis.
In the Grünbaum mapping the contour lines become diffuse
when the IF of the chirp exceeds the limits specified by
the sampling theorem, indicating that the mapping is not
monotonic in that region. The two ovoid shapes in the high
frequency end of the D-S plot are caused by the side-lobes of
the peak obtaining greater magnitude than the “peak” itself.
These regions were masked out during further analysis to
avoid spilling over into other regions. The QMFD mapping
is closest to the continuous mapping, in fact for ω < π/3 a
sampled version of the closed-form continuous mapping is just
as accurate as the mapping we computed:

α = − π
N

cot

(
kπ

N

)
, ω =

2π

N

(
r − N − 1

2

)
csc

(
kπ

N

)
.

The mappings were inverted by calculating the centroid of
all chirp parameters that map to the same peak location. This
inversion is not meaningful, however, if the mapping is not
monotonic. To be a monotonic mapping in two dimensions
[8]: (a) the set of all chirp parameters that map to a single
location in the chirp-rate vs center-frequency plane must form

a connected set, and (b) locations which are adjacent in the
transform space must map to adjacent regions in the chirp
parameter space. Prior work with the DFrFT and its application
to chirp parameter estimation has mainly focussed on just a
specific chirp parameter set.

Figure 4 depicts the regions in the α–ω plane where the
mappings satisfied the connectivity and adjacency conditions.
The invertible mapping regions for the D-S basis shows
several regions where the connectivity criteria are not met.
The mapping for the Grunbaum basis depicts a significantly
smaller invertible region in comparison to the diamond shaped
region, where aliasing does not occur. This is attributable to
the adjacency criteria being violated. The QMFD basis satisfies
these two consistency conditions over a much larger region,
exerting fewer constraints on the range of chirps with which
it can be used.

III. PERFORMANCE EVALUATION

Figure 5 shows the chirp parameter estimation errors using
simple 2D peak detection in MA-CDFrFT transform plane.
When the SNR is very low, the performance of all methods is
similar. When the SNR is high, the average error is roughly
the same as the resolution of the transform. However, the D-
S basis results in significantly more error. This is because
the peak to parameter mapping depicts multiple disconnected
regions of chirp parameters mapping to the same peak location.
Consequently the variance of the estimators for those locations
is much higher than in the other mappings where only a tightly
clustered connected region of chirp parameters maps to each
peak location.

The structure of the mapping can have even more of a
significant effect on super-resolution estimations. To quantify
this we use a cross-hairs subspace decomposition technique in-
vestigated in [8] to refine the estimate. In this method, existing
subspace decomposition techniques are applied to the row and
column of the transform containing the peak providing super-
resolution peak locations. The computed mapping is then
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Fig. 3. Contour Plots of Computed Mappings: (a) continuous FRFT mapping where each contour line shows the locus of chirp parameters
mapping to a single angle or location in the continuous FrFT space. Contours are drawn for angles α ∈ [π
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increments. This corresponds to the grey region in Fig. 1, (b,c,d) contour plots of the mapping

for the different basis, where each contour “line” shows the locus of chirp parameters that map to a single row or column of an N = 256
size transform. Contours are drawn for every 8th row and column, with contours for 64 ≤ k ≤ 192 and 128 ≤ r ≤ 248 visible. The area
shown corresponds to the grey region shown in Fig. 1(a)
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Fig. 4. Actual Valid Mapping Regions: Black regions depict where the connectivity criteria is not satisfied. Grey regions depict where the
adjacency criteria is not satisfied. White regions indicate that both criteria are satisfied. The mappings are for chirps of length N = 256,
with a transform size of N × N , measured using 4N × 4N chirps with center frequencies and chirp rates evenly spaced over the shown
area.
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Fig. 5. 2D Peak Detection Estimation Error: The MSE was calculated
at each SNR using 1000 chirps of length N = 256, in the “safe”
range of |α|(N − 1) + |ω| = IF < 0.85π. A transform of size
N ×N was used.

linearly interpolated to provide an estimate of the chirp param-
eters. Fig. (2) depicts the eigenvalues for the autocorrelation
matrices associated with the center-frequency and chirp-rate
projections indicating that the cross-hairs technique provides
significantly better signal and noise subspace separation than
in prior work [8].

Figure 5 and Fig. (6) depict the chirp parameter estimation
errors using the 2D peak picking and cross-hairs subspace
techniques respectively. As is evident, either of these tech-
niques has more success using the QMFD basis. This is
attributable to the fact that satisfying the adjacency property
implies that interpolating the mapping is a more meaningful
operation. The other contributing factor is the fact that the
chirp rate estimation problem is separable from the center-
frequency estimation problem in this basis, as seen in Fig. 3,
where the chirp-rate contour lines are approximately horizontal
parallel lines.

IV. CONCLUSION

In this paper, we have shown that the different bases
of DFT eigenvectors proposed for the computation of the
Centered Discrete Fractional Fourier Transform are not equally
appropriate for application towards the problem of wideband
chirp parameter estimation. It was shown using connectivity
and adjacency criteria applied to their underlying peak to
parameter mappings, that each of these methods have very
different validity regions where the resulting chirp parameter
estimates are consistent.

Properties leading to inconsistent parameter estimates were
shown to have a measurable impact on the estimation error

-80

-70

-60

-50

-40

-30

-20

-10

-20 -15 -10 -5 0 5 10 15 20 25

N
o
rm

a
liz

e
d
 M

S
E

 (
d
B

)

Signal/Noise (dB)

Center Frequency Estimation

Dickenson Estimation
Grunbaum Estimation

QMFD Estimation
Resolution Lower Bound

Cramer-Rao Lower Bound

-80

-70

-60

-50

-40

-30

-20

-10

-20 -15 -10 -5 0 5 10 15 20 25

N
o
rm

a
liz

e
d
 M

S
E

 (
d
B

)

Signal/Noise (dB)

Chirp Rate Estimation

Dickenson Estimation
Grunbaum Estimation

QMFD Estimation
Resolution Lower Bound

Cramer-Rao Lower Bound

Fig. 6. Cross-Hairs Estimation Error: The MSE was calculated at
each SNR using 1000 chirps of length N = 256, in the “safe” range
of IF < 0.85π. A transform of size N ×N was used, refined using
minimum norm subspace decomposition and FFT size R = 8192.

at fixed transform sizes. It was further shown that among the
three DFT eigenvector basis studied, the QMFD basis resulted
in: (a) the largest set of chirp parameters, where the adjacency
and connectivity criteria for the peak to parameter mapping are
satisfied, (b) peak to parameter mappings that are the closest
to the corresponding continuous FRFT parameter mappings.
The smallest chirp parameter estimation errors in turn resulted
when the QMFD basis was deployed in conjunction with the
subspace cross-hair technique.
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