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ABSTRACT
The Discrete Fractional Fourier Transform is a useful tool
for multicomponent chirp parameter estimation, however
much of the current work ignores the presense of noise.
In recent work, a projection-subspace approach to DFrFT-
based multicomponent chirp parameter estimation was pro-
posed, to exploit the robustness of subspace decomposition
methods. This paper refines the prior projection-subspace
work to overcome limitations caused by the projection pre-
processing, and presents a quantitative analysis of its per-
formance as compared to the Cramér-Rao lower bound.
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1 Introduction

Chirp signals are sinusoidal waveforms with linearly
changing instantaneous frequency. They find wide applica-
tions in radar systems, including synthetic aperture radar,
biomedical applications [1] and can be used as a simpli-
fied model for bat echo-location signals. A robust method
of multicomponent parameter estimation would enable the
estimation of the vibrational frequency of a target and im-
prove estimation performance in the presence of clutter.

The Discrete Fractional Fourier Transform (DFrFT)
shows promise in multicomponent chirp parameter estima-
tion as it generates a strong peak for each chirp whose loca-
tion in the the 2D transform plane corresponds to the spe-
cific center frequency and chirp rate. The mapping between
peak locations and chirp parameters was investigated in [2]
resulting in a closed-form empirical approximation of the
relationship, however this approximation introduces signif-
icant error in the parameter estimation.

Subspace decomposition techniques have also been
investigated for use in conjunction with the DFrFT with
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the aim of providing more robust and accurate estimation
in the presense of noise [3]. The projection method used in
this prior work, however, causes the peak to be suppresed,
hindering the performance of the subspace decomposition.
Finally, neither of the above papers investigated effects of
noise on the performance of their proposed estimators.

In this paper, we will calculate the peak to parameter
mapping at each point in the transform, greatly reducing the
error caused by the approximate mapping. We investigate
using different p-norms for the projection to better accen-
tuate the peaks, and propose a cross-hairs method, where
subspace decomposition is only performed on projections
of thin slices centered on the peaks found by 2D peak de-
tection. Finally, we quantify the performance of the esti-
mators in the presence of noise using simulation data, and
compare them to the Cramér-Rao lower bound.

2 Discrete Fractional Fourier Transform

The Fractional Fourier Transform (FrFT) is a generaliza-
tion of the Fourier Transform. If time and frequency are
treated as orthogonal axes, then the Fourier Transform is a
90◦ rotation in this plane, while the FrFT can generate sig-
nal representations at any angle of rotation in the plane [4].
The eigenvectors of the FrFT are Hermite-Gauss functions,
which result in a kernel composed of chirps. Application of
the FrFT to a chirp results in an impulse for a specific an-
gle. The angle where this occurs corresponds to the chirp
rate of the signal, and the location of the impulse in the
transform corresponds to the center frequency, according
to closed-form equations.

Discrete versions of the Fractional Fourier Transform
have been developed by several researchers [5][6][7]. All
the forms use approximations of the Hermite-Gauss func-
tions for eigenvectors, which lead to approximate chirp
functions as their kernel. The general form of the trans-
form is given by [5]:

Xa = VΛ
2a
π VTx, (1)

where V is a matrix of DFT eigenvectors and Λ is a diag-
onal matrix of DFT eigenvalues.

For this paper, we use the MA-CDFrFT as presented
in [8], which is based on a centered DFT (whose kernel is
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(a) Noise Free Transform and Projections (b) SNR = -8dB Transform and Projections

Figure 1: Effect of Noise on Projection: The MA-CDFrFT transform of a chirp with parameters α = π/2/N, ω = π/8 is shown above
with and without noise added to the signal. Horizontal and vertical projections calculated using a 3-norm, show how the noise floor is higher
in the 1D projections than in the 2D transform. The problem is more pronounced with 1-norm (absolute sum) projection.

generated by the Grünbaum tridiagonal commuter). When
the length of the input is a multiple of four, symmetries of
those eigenvectors allow for an efficient computation given
by:

Xk[r] =
P−1∑
p=0

zk[p]e−j
2π
P pr, (2)

zk[p] = vkp

N−1∑
n=0

x[n]vnp, (3)

where vkp denotes the p-th component of the k-the CDFT
eigenvector. Like the DFT, zero-padding may be used to
generate a transform whose size (P × P ) is greater than
the length of the input vector (N).

3 Chirp Model

The chirp signals considered in this paper are formulated
as:

si[n] = Ai exp(j(αim
2 + ωin+ φi)) (4)

z[n] =
P∑
i=1

si[n] + w[n] (5)

m = n− N − 1

2
0 ≤ n ≤ N − 1

where w[n] is additive Gaussian white noise with a stan-
dard deviation of σ. The unknown parameters, θi =

[Ai, αi, ωi, φi]
T , are the amplitude, chirp rate, center fre-

quency, and phase respectively. This paper focuses on esti-
mating the chirp rate and center frequency. The amplitude
and phase are assumed to be unknown for the purpose of
Cramér-Rao lower bound derivation, but were fixed at 1
and 0 respectively for all simulations. The algorithms were
written assuming they were unknown and did not take ad-
vantage of their fixed value.

Many of the applications of chirps measure real-
valued signals. The techniques presented here can be ap-
plied directly to real valued signals with only minor vari-
ation (there will be two 180◦-symmetric peaks per chirp
instead of one). Alternately, the signal can be converted
to complex form using a Hilbert transform. Preliminary
investigation suggests that these methods have lower error
when operating on complex signals, so that is the focus of
this paper.

4 Subspace Decomposition

This paper builds on the work of [3] to use subspace de-
composition techniques to improve DFrFT chirp rate esti-
mation in the presence of noise. Subspace decomposition
techniques have proven to be very successful at sinusoidal
frequency estimation. They are more robust to noise, and
more accurate than simple Fourier Transform peak detec-
tion. The ideal approach would be to apply a 2D subspace
decomposition (such as developed in [9]) however, this is
quite computationally expensive. Instead, horizontal and
vertical projections of the MA-CDFrFT were calculated us-
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Figure 2: Expected Valid Mapping Region: A mapping must be established between (a subset of) the field of chirp parameters, and the
MA-CDFrFT transform grid. Outside of the dashed region, the instantaneous frequency of chirps will be greater than π, and the sampling
theorem is not satisfied. We thus only generated a mapping for the region shown in grey.

ing a p-norm:

xα = FFT−1 ‖X‖rowp = FFT−1

 Kf∑
k=K0

|Xk[•]|p
 1

p

(6)

xω = FFT−1‖X‖colp = FFT−1

 Rf∑
r=R0

|X•[r]|p
 1

p

(7)

The strong peaks in the projections (as seen in Fig. 1a)
result in strong frequency content in xα and xω , thus turn-
ing the chirp parameter estimation problem into two fre-
quency estimation problems, which were solved using sub-
space decomposition methods.

We investigated using various p-norms to project the
magnitude of the MA-CDFrFT onto the horizontal and ver-
tical axes. The result of our preliminary investigation was
that the 1-norm (absolute sum) tended to bury the peak.
The 2-norm was not appropriate, as the FrFT respects Par-
seval’s Law at each angle of the transform. The Inf-norm
(vector maximum) had a lower noise-floor at high SNR,
but was still fairly susceptible to noise at low SNR levels.
Compared to the Inf-norm the 3-norm had a higher noise-
floor at high SNR, but less at low SNR. It was considered to
be a good compromise and was selected for detailed evalu-
ation in this paper.

The subspace decompostion process begins by per-
forming eigenvalue decomposition on estimated covariance
matrices Rα and Rω of size (C+M)×N , where C is the
number of chirps expected in the signal. The eigenvectors
corresponding to the C largest eigenvalues were then se-
lected to form the signal subspace, leaving M eigenvectors
to form the noise subspace.

Next the pseudo-spectra was calculated using the
MUSIC and Minimum-Norm methods :

PMUSIC =
1

M∑
k=1

|FFT(vk)|2
, (8)

PMIN−NORM =
1

|FFT(VVT
1)|
, (9)

where vk is the k-th eigenvector of V, sorted in ascend-
ing order, and VT

1 denotes a column vector containing the
first element of each eigenvector. These two algorithms
were selected for evaluation in this paper as they showed
the most promise of all the subspace decomposition meth-
ods examined in [3]. It should be noted that the FFT can be
computed for any power-two length R, not just the length
of the eigenvectors, which are of length P . Increasing this
size scales as O(R logR), and is much less expensive than
increasing the size of the MA-CDFrFT at O(P 2 logP ).

Finally, these pseudo-spectra were searched for the
largest C peaks. The indices that were found using this ap-
proach differ from the direct 2D peak detection, due pri-
marily to contributions of other terms in the projection.
Thus a different peak to parameter mapping function was
generated for each method.

5 Generating Peak-to-Parameter Mapping

An empirically determined approximate mapping between
the peak location in the MA-CDFrFT and the chirp param-
eters is given in [2]:

α ≈ 2

N
tan

(
2π

N
r − π

2

)
− 1.41

N

(
2π

N
r − π

2

)
(10)

ω ≈
(

2π

N
k − π

)
+ 0.85

(
2π

N
r − π

2

)3

(11)

This approximate mapping has significant error, however,
so for this paper we will provide a method to pre-calculate
the mapping at each location in the transform to more than
adequate accuracy for 2D peak detection.

To calculate the mappings, we generated N × N
sample chirp functions with evenly spaced center frequen-
cies ranging from 0 to π and chirp rates ranging from
−π/N to π/N . These ranges were chosen because when
|α|(N − 1) + |ω| > π the instantaneous frequency of the
chirp will exceed the range |Ωi[n]| < π, resulting in an
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(c) Minimum-Norm Subspace

Figure 3: Actual Valid Mapping Regions: The mapping is one-to-one in the white areas, was not one-to-one in the grey regions, and had no
solution in the black regions. The area shown in the images correspond to the grey region shown in Fig. 2(a). The mappings were generated
for chirps of length N = 256, with a transform size of N ×N and have a resolution of N ×N . For the subspace decomposition methods,
50 noise eigenvectors were used.

effect similar to aliasing (area shown in Fig. 2). The MA-
CDFrFT is thus not well behaved outside of this range and
we would not expect the mapping to be one-to-one in this
region.

For the direct 2D peak detection methods, we could
have restricted our mapping to chirps within this region.
However, for the projection-subspace approach, since the
horizontal and vertical coordinates of the peak are found
independently, it is possible to obtain an estimate for the
peak outside of the valid region. To calculate the error in
this estimate it is necessary to have a mapping for a full
rectangular region.

We then used the above peak detection methods to de-
termine the peak indices for each of the sample chirps.The
peaks in the MA-CDFrFT occurred roughly between k =
N/4 to 3N/4 and r = N/2 to N. Thus the N × N samples
in chirp parameter space mapped to about N/2 × N/2 in-
dices, for an average over-sampling of 4 times. To invert
this mapping we started by grouping all the chirp parame-
ters that mapped to a specific index location. This location
was mapped to the centroid of the chirp parameters that
mapped to it. If these parameters did not form a connected
region in the chirp parameter grid, then that location of the
mapping was flagged as being not one-to-one. Finally, if no
chirps mapped to an index pair, then the chirp parameters
for that location were determined by linear interpolation of
the surrounding points or 4th-order polynomial extrapola-
tion of the entire mapping depending on whether the loca-
tion was on the interior or exterior of the mapping.

Figure 3 depicts the regions in the α–ω plane where
the mappings were valid. Using the basic 2D peak detec-
tion method, the region of the MA-CDFrFT with a valid
mapping was a slightly smaller subset of the valid re-
gion which the sampling theorem alone would suggest.
There were even a few spots on the interior of the trian-

gle that were not one-to-one. Using the Minimum-Norm
projection-subspace method actually expanded the valid
area, while the MUSIC projection-subspace method made
it much worse. Inspecting slices of the MUSIC mapping
showed that the non-one-to-one areas were mostly the re-
sult of dithering between index steps, and not large discon-
tinuities.

These mappings can be used as a simple lookup ta-
ble when the resolution of the estimator matches that of the
mapping, and this was done with the 2D peak detection. In
the case of the subspace decomposition, however, we chose
to use an output size R greater than the transform/mapping
size P . In this case, linear interpolation of the mappings
was used to obtain the chirp parameter estimates. It should
also be noted that for the subpace techniques, the projec-
tions were only performed over the mapping region k =
N/4 to 3N/4 and r = N/2 to N, not the entire transform.

6 Extension to Multicomponent Chirps

Modifications are needed to extend these methods to
signals containing multiple chirps. Particularly, the
projection-subspace approach does not provide informa-
tion to determine which peaks in the horizontal projection
match the peaks in the vertical projection, and thus it must
be combined with other techniques to obtain a final result.
For this paper, we used 2D peak detection to find the peaks,
and then used subspace decomposition on the row and col-
umn centered at those peaks to refine the result, in what we
are calling the cross-hairs method.

In addition, to calculate the estimation error, we must
define how the estimated parameters are paired with the
actual parameters. We selected the permutation which re-
sulted in the lowest total MSE. The chirps selected to eval-
uate the multicomponent performance are shown in Fig. 4.
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Figure 4: Test Chirp Representations: The chirps used to demonstrate multicomponent estimation performance are shown here in multiple
representations to illustrate their characteristics. The first was selcted to have relatively high chirp rate of α1 = 0.32π/N and moderate center
frequency ω1 = 0.48π. The second is more narrow band with α2 = −0.07π/N , and ω2 = 0.73π.

7 Discussion of Results

7.1 Cramér-Rao Lower Bound

To evaluate the performance of these estimators, it is valu-
able to compare against the theoretical limit provided by
Cramér and Rao. This lower bound has been calculated
before for chirps [10] [11], but since different papers use
slightly different forms of the chirp function, we present
our derived results for the specific form used in this paper.

The components of the Fisher information matrix for
any signal in complex additive Gaussian white noise is:

Jij =
2

σ2

N−1∑
n=0

(
∂µn
∂Θi

∂µn
∂Θj

+
∂νn
∂Θi

∂νn
∂Θj

)
, (12)

where µn = real(z[n]) and νn = imag(z[n]), are the ex-
pected values of the real and imaginary components of the
signal. For the multicomponent case Θ = [θ1, θ2, . . . θP ]T

and J will have the form:

J =


J11 J12 · · · J1P
J21 J22 · · · J2P

...
...

. . .
...

JP1 JP2 · · · JPP

 , (13)

composed of the block matrices:

Jij =
2

σ2

N−1∑
n=0


cij [n] Ajsij [n]m2

−Aisij [n]m2 AiAjcij [n]m4

−Aisij [n]n AiAjcij [n]m2n
−Aisij [n] AiAjcij [n]m2

Ajsij [n]n Ajsij [n]
AiAjcij [n]m2n AiAjcij [n]m2

AiAjcij [n]n2 AiAjcij [n]n
AiAjcij [n]n AiAjcij [n]

 ,
(14)

where

cij [n] = cos(Φi[n]− Φj [n]) (15)
sij [n] = sin(Φi[n]− Φj [n]) (16)

Φi[n] = αim
2 + ωin+ φi (17)

For the case of a single chirp, the inverse of this matrix has
a simple closed form, and the Cramér-Rao lower bound is:

var{Â} ≥ σ2

2N
(18)

var{α̂} ≥
( σ
A

)2 90

N(N2 − 1)(N2 − 2)
(19)

var{ω̂} ≥
( σ
A

)2 6

N(N2 − 1)
(20)

var{φ̂} ≥
( σ
A

)2 21N4 − 24N3 − 66N2 + 96N − 27

8N(N2 − 1)(N2 − 2)
(21)

For the multicomponent case, there is no simple closed-
form solution, but the matrix inverse can be easily calcu-
lated for any specific chirp parameters.

7.2 Single Chirp Performance

With this framework, we proceed to evaluate the perfor-
mance of the proposed estimation methods using simu-
lated monocomponent chirp signals at various SNR levels.
The results are shown in Fig. 5. At low SNR (roughly
< −15dB), all the estimation methods return results no bet-
ter than choosing a point in the mapping range at random.
At medium-to-high SNR (roughly > −5dB) the 2D Peaks
method is able to determine the center frequency to within
the pixel resolution of the transform grid and the average
error of the chirp rate is within a few pixels. The subspace
methods performed even better in this region because of
their higher resolution output.
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Figure 5: Single Chirp Parameter Estimation Error: The MSE was calculated at each SNR using 1000 chirps of length N=256, in the “safe”
range of |α|(N−1)+|ω| < 0.85π. A transform of sizeN×N was used. For the subspace decomposition methods, M=50 noise eigenvectors
were used, with 3-norm projections as the inputs and an output resolution of R=2048.

At medium-low SNR the MSE transitions from these
two extremes. Based on preliminary investigation, it ap-
pears that this primarily reflects the percentage of time that
a noise-generated peak is selected rather than the true peak.
In other words, we believe the estimation either provides a
relatively accurate answer, or a completely wrong answer
in this region.

The subspace decomposition methods actually per-
form worse in this SNR region. The reason can be seen in
Fig. 1. As discussed before, the noise in the signal is dis-
tributed throughout the transform, so the peak still stands
out above the noise floor in the 2D transform. However, the
projections include all the noise from all the rows/columns
and the noise floor buries the peak. Furthermore, in the
case of multicomponent chirps, the support leading up to
each of the peaks sum together to create a high “cross-term
floor” even when no noise is present. Using a 3-norm is an
improvement over the 1-norm, but still has its limits. Thus
the subspace decomposition techniques presented are use-
ful for improving accuracy at low SNR, but not extending
the SNR range.

7.3 Multicomponent Performance

The results of 2D-peak detection with two chirps are shown
in Fig. 6. These chirps are well separated, and the Cramér-
Rao lower bound is only negligibly higher than the bound
for a single chirp. Nevertheless, the error begins to increase
at higher SNR than for the single-chirp (about 7dB vs -
5dB). However, given suitable SNR, they still provide esti-

mations close to the limit of the transform resolution.
The results of the cross-hairs method are shown in

Fig. 7. This method performed only slightly better than the
2D peak detection approach. By estimating the chirp rate
and center frequency independently, we are treating the es-
timation as a separable problem, however the approximate
mapping given in equation 11 shows that this is not the
case. The results are thus consistent with the general prin-
ciple that joint estimators are more accurate than indepen-
dent ones.

To better understand what is happening, we generated
zoomed-in sections of the mapping near the test chirps,
as shown in Fig. 8. As mentioned before, the subspace
methods provide super-resolution peak locations, and we
must then interpolate the mapping (which is only defined
at integer peak locations) to obtain the chirp parameter esti-
mates. For interpolation to be meaningful, adjacent integer
peak locations should map to regions of chirp parameters
which are also adjacent. Figure 8 shows that this is true
in one dimension, but not in both. Therefore, interpolation
of the mapping is not valid and instead a seperate high-
resolution mapping must be generated specifically for the
super-resolution subspace method. Generating such a map-
ping has computational complexity ofO(R2P 2 logP ), and
could not be completed for this paper.

8 Conclusion

In this paper, existing work on multicomponent chirp pa-
rameter estimation using the DFrFT and subspace decom-
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Figure 6: The multicomponent estimation error using the 2D peak detection method was calculated using the chirps depicted in Fig. 4,
averaged over 1000 experiments at each SNR.
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Figure 7: The multicomponent estimation error using the minimum-norm cross-hairs method was calculated using the chirps depicted in
Fig. 4, averaged over 1000 experiments at each SNR. Subspace decomposition was performed on 1-pixel slices centered on the peaks, with
an output resolution of R=2048

position was refined to: (a) address peak to parameter map-
ping issues by explicit evaluation of the relevant peak-to-
parameter mapping, and (b) alleviate noise accumulation
issues arising from projection operations, using the cross-
hair approach. The performance of the refined subspace
algorithm was evaluated by comparing it to the CRLB.
Simulation results indicate that the proposed approach pro-
vides a computationally viable suboptimal alternative to the
two-dimensional subspace chirp parameter estimation ap-
proach.
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Figure 8: Mapping Bands: These images show segments of the mapping function generated with an oversampling factor of about 400 (20
in each direction), zoomed in near the two test chirps depicted in Fig 4. Each grey level distinguishes the locus of chirp parameters which
map to a specific row (or column) in the MA-CDFrFT transform. The cross-hairs indicate the centroid of the chirp parameters which map to
a single point in the transform, and the circles indicate the test chirp parameters.
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