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Resource-Constrained Load Balancing Controller for a Parallel Database
Z. Tang, J. D. Birdwell, J. Chiasson, C. T. Abdallah, and M. Hayat

Abstract—This brief documents experimental results using
a deterministic dynamic nonlinear system for load balancing,
previously reported by Tang et al. in a cluster of computer nodes
used for parallel computations in the presence of time delays and
resource constraints. While previous publications by the authors
have provided theoretical analysis of this load-balancing strategy
using an idealized model, and have documented experiments
using a simulated database, experimental results using a complete
database for DNA profiles are documented here. Evaluation of
the proposed load-balancing strategy using an actual database
was critical because of several characteristics of the database that
cannot be accurately captured using either a simulation model
or database, including the variation in times required for the
database to perform search operations, the time-varying and
task-dependent computational load the database imposes upon
each node of the parallel computer, and the time-varying network
traffic imposed by both the communication of database search
requests and results, mixed with the traffic generated by the
load-balancing strategy. Although the load-balancing strategy
can be represented in a relatively straightforward manner using
mathematics, its implementation is by necessity an approxima-
tion to its mathematical description. The reported experimental
results serve to validate the superiority of using the controller
based on the anticipated work loads to a controller based on
local work loads, which has been predicted with experiments
using a simulated database and documented in prior publications.
The experiments demonstrate the efficacy of the load-balancing
strategy using an anticipated pattern of work loads and provide
support for scalability of the approach.

Index Terms—Cluster computing, distributed database, load
balancing, parallel computing, time delay.

I. INTRODUCTION

PARALLEL computing, which uses multiple intercon-
nected computational elements to solve a single problem,

can be applied to large-scale parallel databases. DNA databases
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used in forensic applications have been growing rapidly, and
are likely to increase to an eventual size of profiles.
The eventual size and the performance expectation for these
databases necessitate the development of parallel databases.
New methods developed by Wang and Birdwell [3]–[5] lead
naturally to a parallel decomposition of the DNA database
search problem while providing orders of magnitude improve-
ments in performance over current software. Distributing the
load evenly on parallel architectures is a key attribute of an
efficient implementation.

Distribution of computational load across available resources
is referred to as the load-balancing problem in the literature
[6], [7]. Methods to balance computational load may be either
deterministic, depending on a predefined strategy [8]–[12], or
stochastic, distributing load in a random fashion [13]–[17].
Static load balancing was modelled as noncooperative game
recently [18]. Iterative load-balancing methods are addressed in
[8] and [19]–[22]. A comparison of several balancing methods
is provided by Willebeek-LeMair and Reeves [23]. Approaches
based on queuing theory appear in [24] and [25]. Control theory
has shown promise in information technology applications,
including web services [26] and databases [27], [28].

The work described in this brief is based upon a generaliza-
tion of queue length of tasks to expected waiting time, which
accounts for differences among computational elements (CEs),
and aggregates the behavior of each queue. Previous results by
the authors study the effects of delays in the exchange of in-
formation among CEs and the performance of a load-balancing
strategy [29]–[32]. However, the model used to obtain this re-
sult did not account for processor resource constraints—the fact
that load distribution and task processing cannot be carried out
simultaneously.

Our prior work [1] presents a mathematical model that
captures processor resource constraints in a load-balancing
system. This open-loop model was shown to be self-consistent
and (Lyapunov) stable. Initial results showing an extension to
closed-loop control for a resource-constrained load balancing
are presented in [2]. A control law has been proposed by the
authors that uses estimates of anticipated workloads, which
includes not only local estimates of the queue sizes at the other
nodes, but also estimates of the number of tasks in transit to
each node. A discrete event simulation of the closed-loop model
using OPNET Modeler [33] is presented in [34], demonstrating
good agreement between the nonlinear time-delay model and
the simple experimental implementation.

While the author’s prior publications document experimental
work using a time delay to emulate a database search, this brief
documents the closed-loop model and results using implemen-
tations of DNA profile databases containing several million pro-
files. Experimentation using a DNA profile database rather than
an emulation of database activity using a time delay model is im-
portant for several reasons: 1) The times required to complete
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searches for matching DNA profiles in a database are variable,
and the distribution of search times has a long tail; 2) the DNA
database requires significant processor and memory resources
which compete with any load-balancing strategy; and 3) engi-
neering trade-offs exist in the implementation of both the DNA
database and the load-balancing strategy that influence perfor-
mance. For these reasons, it is important to establish that the
load-balancing performance predicted by simulations and im-
plementations that emulate the DNA database using time de-
lays can be achieved for an operational database. Experiments
on a parallel DNA database are presented in this brief that doc-
ument both the implementation strategy and the efficacy of the
load-balancing strategy using anticipated work loads.

This brief is organized as follows. Section II briefly describes
a nonlinear time-delay model of a load-balancing algorithm
for a computer network that incorporates time delays and the
model parameter values are given here. Section III documents
the implementation of a parallel database and its load-balancing
method. Section IV presents experiments on the parallel DNA
database using the closed-loop controller based on anticipated
work load. Section V concludes this work.

II. MATHEMATICAL MODEL

The model used in this brief captures the effect of the delays
in load-balancing techniques as well as the processor constraints
so that system theoretic methods can be used for analysis. The
mathematical model of the task load dynamics at a given com-
puting node for load balancing is given by [1] and [2].

The model has been shown in [1] to be self-consistent and
be (Lyapunov) stable, but asymptotic stability must be insured
by the choice of the feedback law. A closed-loop controller is
implemented that uses not only the local queue size, but also an
estimate of the number of tasks in transit to the queue from other
nodes [2].

The load transfer portions, i.e., , can be specified using the
anticipated waiting time of the other nodes as follows:

sat
sat

(1)

wheresat is defined as sat if
if

The quan-

tity sat is a measure by node as to how
much node is below node ’s estimate of the network average
(anticipated) waiting time. Node then portions out its tasks
among the other nodes according to the amounts they are below
its estimate of the network average waiting time.

Determination of the model parameters through computation
experiments on a parallel machine (discussed below) was given
in [2]. Details about parallel computation experiments were dis-
cussed in [35]. On each node , an average processing time to
service a search task on a parallel DNA database of s
was used. The expected wait time depends on
the size of the task queue. We note that this is a significant ap-
proximation, as the time required to process each task depends
upon the characteristics of the data associated with each search.
The rate of generation of waiting time is either or ,
for at time . Because the model’s state for each node is
expected waiting time, the rate of reduction in waiting time due

to processing of tasks is . The network bandwidth limita-
tion was experimentally determined in [2] for an average packet
size of 4 kB and is captured in the model by the data transfer
rate limit . The network communi-
cation delay experienced by each transfer is random, with an
average delay of s. The task transfer delays among
nodes depend on the numbers of tasks to be transferred and
are also random [2]. For chunked data transfers of tested search
tasks, these delays vary from 400 s to 4 ms.

III. EXPERIMENT DESIGN

A parallel computer has been built to evaluate load-balancing
strategies on parallel databases. A root node (search server)
communicates with groups of networked computers. Each of
these groups is composed of nodes holding identical copies of
a portion of the database. Load-balancing actions are performed
among the nodes inside each group. It is anticipated that the im-
plementation will scale by multiples of eight computers, and the
upper limit of this design appears to be on the order of DNA
profiles due to current memory limitations of the systems and
available network bandwidth.

A database search engine is executed on each node, except
the root node, of the parallel machine. The parallel database
is implemented as a set of queues with associated search en-
gine threads, typically assigned one per node of the parallel ma-
chine. The search engine accesses tree-structured indices to lo-
cate database records that match search requests, as described in
[5]. Due to the structure of the search process, search requests
can be formulated for any target profile and associated with any
node of the index tree. These search requests are created not only
by the database clients; in one implementation of the database,
the search process itself can also create search requests as the
index tree is descended by any search thread. Search requests
that await processing may be placed in any queue associated
with a search engine containing the same data, and the contents
of these queues may be moved arbitrarily among the nodes of a
group to achieve a balance of the load.

A search server communicates with clients, accepts in-
coming requests, and returns results. Clients do not interact
directly with parallel nodes, but instead see a single database
with rapid search capability. Fig. 1 shows a multithreaded
search server using threads [36], PVM [37], and object seri-
alizations. The multithreaded search server starts a listening
thread (LThread) which listens for connection requests,
and manages a pool of service threads (SThread) that ser-
vice these connections. Requests are distributed and results
are gathered using a communication thread (CommThread),
which communicates with the search engines via PVM and
serialization. A logging thread (LogThread) records events,
such as connection time and request information.
CommThread distributes requests to and gathers results

from all search engines on the parallel computer. Each search
engine on the parallel computer enrolls into PVM after building
an initial DNA decision tree (indexing previously stored DNA
profiles). After searching through the decision tree for matches
(or other actions, depending on requests from CommThread),
the search engine sends the result in a serialized buffer
using PVM to the CommThread of the search server. The
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Fig. 1. Schematic diagram of a multithreaded search server using PVM and
object serializations.

Fig. 2. Time measured for 2000 random searches on the multithreaded search
server with 48 million profiles on 24 nodes. (Top) Average search time. (Bottom)
Average transaction time.

SThread returns the results to the client via a dedicated socket
connection.

An experiment using 2000 random searches is conducted to
test the performance of the multithreaded search server. The
DNA database contains 48 million profiles stored
across 24 nodes of the parallel computer, with a two-million-
profile portion stored on each node. Fig. 2 shows the measured
search times and transaction times for 2000 random searches.
In this figure, the top part shows the average search time versus
the node index (node01 through node24). The search time
refers to the time to service a search request by searching the
decision tree to find an exact match. Node14 has the largest
average search time at about 340 s, while node07 has the
smallest average search time at about 270 s. This variation is
a function of random effects within each node and variations in
the database’s index structure. The average search time across
the parallel machine is 318.3 s. The bottom part shows the av-
erage transaction time for 2000 random searches as a function
of the node index. The transaction time is the round-trip time
required to send a search request from a client and return re-
sults. The average transaction time across the parallel machine
is 3.7 ms.

IV. EXPERIMENTAL RESULTS

Experimental results for parallel searches with load bal-
ancing integrated with a parallel DNA database are presented
in this section. The first experiments are conducted to evaluate
the load-balancing algorithm on the parallel database using a
nonempty initial task distribution and no arriving tasks. The
second experiments show results with randomly generated task
arrivals to the search engines and compare this to searching
the parallel database with load balancing disabled. The third
experiments show results with load balancing on a larger
network consisting of six nodes. These experimental results
demonstrate the efficacy of the load-balancing strategy using
anticipated waiting times on a parallel DNA database.

A. Queues of Initial Tasks

In this experiment, the performance of load balancing for a
three-node group with an initial unbalanced condition and no
new arrivals is evaluated. Each of the nodes (labeled node1,
node2, and node3) runs a search engine, and the three DNA
databases are identical. The initial conditions used for the task
queues are (0, 0, 200). On each node, a load-bal-
ancing thread broadcasts its queue size (when the queue’s size
changes) to the other nodes in the network, and also receives
information on their queues’ sizes. After loading the initial 200
search requests (tasks), node3 calculates its estimate of net-
work average load as (with 0
from both node1 and node2), and its workload relative to the
network average as . Next, node3 cal-
culates the portions of search requests (tasks) to be transferred
according to (1), and broadcasts the number of search requests
to be transferred to each of the other nodes, which include the
(anticipated) numbers of tasks being sent to node1 and node2
(66 each). Fig. 3(a) shows the local workloads, average esti-
mates, and tracking differences computed by node3. ode1 re-
ceives the values broadcast from node3, and updates its esti-
mate of average (anticipated) workload as

. Node1 then calculates its workload
relative to the network average as

, and so sat . In this manner, node1
has a more up to date estimate of the (anticipated) workload at
node2, and unnecessary transfers are avoided. Upon receiving
the 66 requests transferred from node3, node1 inserts the
search requests to its queue and continues processing them. The
local workloads and average estimates on node1 are shown in
Fig. 3(b). Fig. 3(a) and (b) shows that the load-balancing algo-
rithm, which uses a closed-loop controller based on anticipated
work loads, works quite well in this situation.

A comparison of the average estimates on each of the three
nodes as a function of time is shown in Fig. 4(a). The average es-
timates on the three nodes are similar. The deviations are due to
variations in the times for different search requests and random
delays in network traffic, and the small positive threshold (10)
is used to prevent chattering. Fig. 4(b) compares the tracking
differences between local workloads and average estimates on
the three nodes. The local workloads track the average estimates
very well, and the system settles quickly. Note that the database
searches are running in parallel and asynchronously on each
search engine node. Only the changes of queue states on each
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(a)

(b)

Fig. 3. Workloads and average estimates on (a) node3 and (b) on node1.

node are logged. Task processing (insertions and removals of
tasks) on node1, as well as node2, starts after receiving the
tasks transferred from node3.

B. Randomly Generated Requests

In this experiment, the tasks are collected into blocks of 100
by the search server. To evaluate the queuing of tasks on the
search engine nodes and subsequent load balancing and task

(a)

(b)

Fig. 4. Average estimates � � � � � (a) and tracking differences
� � � � � (b) on three nodes with initial tasks.

processing, these blocks of 100 tasks are sent to randomly se-
lected nodes in the group. This experiment also uses a group
of three nodes, and a total of 1000 search requests (tasks) are
generated by a client program by randomly selecting DNA pro-
files to be used as targets for a search. Every 5 ms the search
server randomly selects a search engine node and sends a block
of 100 tasks. This rate exceeds the rate at which each queue can
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Fig. 5. Workloads, average estimates, and tracking differences on node2with
random requests. Blue curve: workload � , green: average estimate � , and
red: tracking difference � .

receive tasks and insert them into a local queue; thus, the tasks
are received over a period of about 140 ms. While the search en-
gine thread on each node processes requests in its local queue,
each node exchanges queue information with the other nodes
and redistributes the tasks depending on the relative workload
by running the load-balancing thread. Fig. 5 shows the work-
load, average estimate, and tracking difference on node2. The
large upward transitions are caused by task arrivals (blocks of
100 tasks) from the client, while small upward transitions are
caused by receipt of transferred search requests and queue in-
sertions. The downward transitions are caused by removal of
tasks from a queue for service or for transfer in blocks (which
may be of different sizes, as determined by the load-balancing
implementation) to other nodes.

Fig. 6 shows a comparison of average estimates computed
on three nodes with randomly generated requests. When a new
block of search requests arrives, the receiving node updates
its average, which creates a step transient that is visible in the
figure. The load-balancing algorithm then evens out the tasks
and brings the average estimates together. For ms, no
new search requests arrive. The system settles to a balanced
state, and the average estimates on three nodes closely follow
each other.

Fig. 7 shows the responses for 1000 tasks arriving in ten
blocks on three nodes when the load-balancing thread is dis-
abled. The search server randomly selects a search engine node
for each transfer. Note the upward and downward transitions are
caused by task arrivals and removals. The near-zero slopes cor-
respond to computing time used for other non-task-processing
jobs, such as data logging, network communication, and the op-
erating system as well. From Fig. 7 the queues on the nodes
are not balanced. This leads to different completion times and a
larger completion time for the group.

C. Scaling to Larger Networks

This set of experiments shows results for parallel searches
with load balancing on a larger network of multiple nodes

Fig. 6. Comparison of average estimates on three nodes with randomly gener-
ated requests. The black, cyan, and pink curve stands for � � � � �

on node1, node2, and node3 respectively.

Fig. 7. Responses of queue sizes on three nodes without load balancing.

. In this experiment, a total of 2000 tasks are randomly
generated by a client program in 20 blocks of 100 tasks each.
A block of 100 requests is randomly distributed by the search
server every 5 ms to a search engine node for service. The
load-balancing threads on six nodes communicate with each
other and even out the workloads. Responses on a representative
node node3 are shown here to demonstrate the load-balancing
strategy. Fig. 8(a) shows workloads, average estimates, and
tracking differences computed on node3 in a network of
six nodes with randomly generated requests. Node3 receives
requests transferred from other nodes, shown as small upward
transitions in the figure, and continues processing them. Three
incoming blocks of requests (100 each) from the client are
distributed to node3, shown as three large upward transitions
in the figure, and node3 then balances the requests among
the other five nodes according to the amount each is estimated
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(a)

(b)

Fig. 8. Workloads, average estimates, and tracking differences on (a) node3
and (b) on node5 with randomly generated tasks.

(by node3) to be below node3’s estimate of network average
load. Fig. 8(b) shows the local workloads, average estimates,
and tracking differences on another representative node node5.

Fig. 5 shows a comparison of average load estimates mea-
sured on six nodes. When a new block of search requests ar-
rives, the receiving node updates its average, which creates a

Fig. 9. Comparison of average estimates on six nodes with randomly generated
requests.

step transient as shown in Fig. 9. The load-balancing algorithm
then evens out the tasks and brings the average estimate close
to that on other nodes. For ms, no new search requests
arrive. The system settles to a balanced state, and the average
estimates on the six nodes closely follow each other.

Notice that the previous experiment used a group of three
nodes for the incoming 1000 randomly generated tasks (ten
blocks of 100 tasks each), and this experiment uses a group
of six nodes to balance and service the incoming 2000 ran-
domly generated tasks (20 blocks of 100 tasks each). The overall
waiting time to complete all 2000 tasks (the maximum com-
pletion time in a group) is 377.4 ms in this experiment (see
Fig. 9), while it took 327.1 ms to complete all 1000 tasks on
three nodes in the previous experiment (see Fig. 6). For this
case, the speedup is 73% when the number of nodes is doubled.
Note that the scale-up efficiency will decrease with increasing
number of nodes due to the increasing demands placed upon
processor and network resources.

V. CONCLUSION

A load-balancing algorithm for parallel computing is mod-
eled as a nonlinear dynamic system incorporating both time
delays and processor resource constraints. A closed-loop con-
troller is implemented that uses not only the local queue size,
but also an estimate of the number of tasks in transit to the queue
from other nodes. Experiments on a parallel DNA database
demonstrate the efficacy of the load-balancing strategy. Future
work includes scaling up the methodology for larger networks.
For example, while each node broadcasts (by multicasting)
both its queue size and the number of tasks in transit to other
nodes, the local controller could perhaps send out tasks only to
the nodes corresponding to the largest values of load transfer
portions (i.e., the nodes with the largest ). This would
alleviate the communication cost (time) required to transfer
tasks to all other nodes in the network.
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