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SUMMARY

The problem of gain-scheduled state feedback control for discrete-time linear systems with time-varying parameters is
considered in this paper. The time-varying parameters are assumed to belong to the unit simplex and to have bounded rates
of variation, which depend on the values of the parameters and can vary from slow to arbitrarily fast. An augmented state
vector is defined to take into account possible time-delayed inputs, allowing a simplified closed-loop analysis by means of
parameter-dependent Lyapunov functions. A gain-scheduled state feedback controller that minimizes an upper bound to the
H∞ performance of the closed-loop system is proposed. No grids in the parametric space are used. The design conditions
are expressed in terms of bilinear matrix inequalities (BMIs) due to the use of extra variables introduced by the Finsler’s
lemma. By fixing some of the extra variables, the BMIs reduce to a convex optimization problem, providing an alternate
semi-definite programming algorithm to solve the problem. Robust controllers for time-invariant uncertain parameters, as
well as gain-scheduled controllers for arbitrarily time-varying parameters, can be obtained as particular cases of the proposed
conditions. As illustrated by numerical examples, the extra variables in the BMIs can provide better results in terms of the
closed-loop H∞ performance. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One cannot deny the fact that gain scheduling has
become an important topic within control system theory
[1, 2]. As shown in [3], this technique can extend the
validity of the linearization approach of non-linear
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systems to a range of operating points. Consequently,
gain-scheduled controllers are guaranteed to work in
a bigger region instead of only in a certain neighbor-
hood of a single operating point. The main idea is to
model the system in such a way that the different oper-
ating points are parametrized by one or more variables,
commonly called scheduling variables [3]. The stability
is then assured by a closed-loop Lyapunov function
and a family of linear controllers, whose parameters
are changed in accordance with the scheduling rules.
Although there are other articles addressing the topic of
gain scheduling [4–6] can be considered as pioneering
works.

The use of linear parameter varying (LPV) struc-
tures to model certain classes of non-linear systems has
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provided an interesting framework for gain-scheduling
control by means of convex optimization [2, 7–9]. It is
worth mentioning that the state-space dynamic matrices
of LPV systems depend on time-varying parameters
that are assumed to be measured online. The use of
such parameters in defining the scheduling rules brings
extra information during the design step what may lead
to less conservative results when contrasted to robust
control strategies.

The Lyapunov theory has been extensively used as
a main tool to deal with synthesis of gain-scheduled
controllers. In many cases, it might be possible to
express the design conditions as an optimization
problem in terms of linear matrix inequalities (LMIs),
which can be numerically handled by specific softwares
[10–12]. As a way to guarantee robustness against
practical disturbances, the H2 and H∞ norms have
been frequently applied as indexes of performance.
Recent works include [13] where the problem of
stabilizability and H∞ control of discrete-time LPV
systems is investigated by means of gain-scheduled
state feedback [14] in which gain scheduling for linear
fractional transformation (LFT) systems is designed by
using parameter-dependent Lyapunov functions [15],
where gain scheduled H2 controllers for affine LPV
systems are proposed [16] in which robust and gain-
scheduled controllers for LFT parameter-dependent
systems are designed by using duality theory [17],
where switching H∞ controllers for a class of LPV
systems scheduled along a measurable parameter
trajectory are addressed, among others.

Bilinear matrix inequalities (BMIs) have also been
applied in the study of control of LPV systems. It is
well known that optimization problems expressed in
terms of BMIs are non-convex. Nevertheless, the use
of BMIs may represent a good strategy to face prob-
lems with either no solution, only sufficient conditions
available in the literature or to improve the closed-loop
performance. See, for instance, [18–21] and references
therein.

Another important aspect observed in a large number
of dynamic models, including LPV plants, is the pres-
ence of time delays. In many cases, a good charac-
terization of time delays is required since they may
represent a source of instability to the system trajec-
tories. When the delay is known, a simple strategy

consists of defining an augmented state vector, and
then to design a standard controller that takes into
account the delayed states (i.e. a memory controller).
Other approaches could be used to cope with time
delays, as for instance the ones based on the Lypuanov–
Krasovskii functionals, resulting, in general, in more
complex conditions that demand a higher computational
effort.

The aim of this paper is to provide gain-scheduled
memory controllers to stabilize discrete time-varying
linear systems with bounded rates of variation.
A simplified framework for possible time delays is
assumed, where the delay is constant and a memory
is used to store the delayed information. The use of
a memory in the feedback loop allows one to cope
with time delays without making use of more complex
Lyapunov functionals. All the system matrices are
assumed to be affected by the time-varying parameters,
which are supposed to lie inside polytopic domains.
An H∞ guaranteed cost, which reflects the worst-case
energy gain of the system, provides robustness with
respect to unmodeled uncertainties. A preliminary
version of this paper appeared in [22], where the
time-varying parameters were allowed to vary arbi-
trarily fast inside the polytope. Here, a more precise
parameter variation modeling is used to take into
account the bounds on the rates of variation, providing
synthesis procedures to cope with parameters that can
be frozen or can vary slowly or arbitrarily fast. The
Lyapunov theory is applied to assure the closed-loop
stability with H∞ disturbance attenuation, with a
parameter-dependent Lyapunov function that reduces
the conservatism of the proposed method, resulting in
a more general approach when compared with methods
based on quadratic stability. Extra variables introduced
by the Finsler’s lemma, that may be freely explored in
the search for better performance of the LPV system,
lead to design conditions expressed in terms of BMIs.
The gain-scheduled memory controller is then obtained
by the solution of an optimization problem that mini-
mizes an upper bound to theH∞ index of performance
subject to a finite number of BMI constraints formu-
lated only in terms of the vertices of the polytopic
model. An iterative scheme is proposed, exploiting
the fact that the BMIs reduce to LMIs by fixing some
variables and also using line searches. Some results
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from the literature concerned with stability without
time delays can be obtained as a particular case
of the proposed method. Numerical examples illus-
trate the proposed conditions. The strategy proposed
here could also be adapted to cope with the design
of gain-scheduling controllers based on other types
of storage functions, such as Lyapunov–Krasovskii
functionals.

2. PRELIMINARIES AND PROBLEM
STATEMENT

Consider the time-varying discrete-time system,

x(k+1) = A(�(k))x(k)+Bdu(�(k))u(k−�)

+Bu(�(k))u(k)+Bw(�(k))w(k)

x(0) = 0 (1)

y(k) =C(�(k))x(k)+Ddu(�(k))u(k−�)

+Du(�(k))u(k)+Dw(�(k))w(k)

where � represents the discrete-time delay, x(k)∈Rn is
the state-space vector, u(k)∈Rm is the control signal,
w(k)∈Rr is the l2[0,∞) noise and y(k)∈Rq is the
controlled output. The time-varying vector of parame-
ters �(k) belongs to the unit simplex

UN =
{
�∈RN :

N∑
i=1

�i =1,�i�0, i=1, . . .,N

}

for all k�0 with bounded rates of variation of
percentage b∈[0,1]. For instance, b=0.05 indicates
that the parameters are constrained to vary only 5% of
their original values between two instants of time. The
time-invariant case is modeled by b=0 and arbitrarily
fast variations by b=1. All matrices are real, with
appropriate dimensions, belonging to the polytope

P̂�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
A(�(k)) Bu(�(k))

Bdu(�(k)) Bw(�(k))

C(�(k)) Du(�(k))

Ddu(�(k)) Dw(�(k))

⎤
⎥⎥⎥⎥⎦=

N∑
i=1

�i (k)

⎡
⎢⎢⎢⎢⎢⎣

Ai Bui

Bdui Bwi

Ci Dui

Ddui Dwi

⎤
⎥⎥⎥⎥⎥⎦ , �(k)∈UN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2)

More specifically, the system matrices are given, for
any time k�0, by the convex combination of the
well-defined vertices of the polytope P̂. As usual in
gain-scheduling control, it is also assumed that the
parameters �(k) are measured online.

In order to guarantee the stability of system (1), a
memory state feedback controller with a parameter-
dependent gain is designed. Using extra state variables
z(k) to store the delayed values of the control signal,
system (1) can be rewritten as follows [23]:

x̃(k+1) = Ã(�(k))x̃(k)+ B̃u(�(k))u(k)

+B̃w(�(k))w(k)

x̃(0) = 0 (3)

y(k) = C̃(�(k))x̃(k)+ D̃u(�(k))u(k)

+D̃w(�(k))w(k)

where x̃(k)=[x(k)′z(k)′]′ ∈Rn+�m and

Ã(�(k)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(�(k)) Bdu(�(k)) 0 . . . 0

0 0 I . . . 0

...
...

...
. . .

...

0 0 0 . . . I

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̃u(�(k)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bu(�(k))

0

0

...

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)
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B̃w(�(k)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bw(�(k))

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

C̃(�(k)) = [C(�(k)) Ddu(�(k)) 0 . . . 0]
D̃u(�(k)) = Du(�(k)), D̃w(�(k))=Dw(�(k))

The memory control law is given by

u(k)=[Kx (�(k)) Kd(�(k))]
[
x(k)

z(k)

]
=K (�(k))x̃(k) (5)

where K (�(k))=[Kx(�(k)) Kd(�(k))], yielding the
closed-loop system

x̃(k+1) = Ãcl(�(k))x̃(k)+ B̃w(�(k))w(k)

x̃(0) = 0 (6)

y(k) = C̃cl(�(k))x̃(k)+ D̃w(�(k))w(k)

with x̃(k)∈Rn+�m,w(k)∈Rr , y(k)∈Rq and

Ãcl(�(k)) = Ã(�(k))+ B̃u(�(k))K (�(k))

C̃cl(�(k)) = C̃(�(k))+ D̃u(�(k))K (�(k))
(7)

The control problem to be dealt with can be stated
as follows.

Problem 1
Find parameter-dependent matrices Kx (�(k))∈Rm×n

and Kd(�(k))∈Rm×�m of the control law (5), such that
the closed-loop system (6) is asymptotically stable, and
an upper bound �>0 to the H∞ performance is mini-
mized, that is

sup
w �=0

‖y‖22
‖w‖22

<�2 (8)

with w∈ l2[0,∞).

Condition (8) for a given closed-loop discrete time-
varying linear system can be characterized by the
discrete-time version of the bounded real lemma in

i

Δ i

b

b

b

1

1

1

1 b

Figure 1. Region on the plane ��i ×�i where ��i can
assume values as a function of �i (dark region).

terms of parameter-dependent LMIs, as for instance it
has been presented in [24, 25]. The result is extended
here in the context of parameter-dependent time-
varying systems, as follows.

Lemma 1
For a given �, if there exists a bounded matrix sequence
P(�(k))′ = P(�(k))>0 such that‡

⎡
⎢⎢⎢⎢⎢⎣

−P(�(k)) P(�(k)) Ã(�(k))′ P(�(k))C̃(�(k))′ 0

(�) −P(�(k+1)) 0 B̃(�(k))

(�) (�) −�I D̃(�(k))

(�) (�) (�) −�I

⎤
⎥⎥⎥⎥⎥⎦

<0 (9)

for all �(k)∈UN , then the closed-loop system (6) is
asymptotically stable with an upper bound � to theH∞
performance.

Note that, since the parameters lie inside a unit
simplex, the rates of variation are intrinsically lower
bounded by −b and upper bounded by b,b∈[0,1].
In order to develop a model§ for the parameter varia-
tion when −b<��i (k)<b,b �=0, note that the feasible
values of ��i (k) depend on the actual values of �i (k),
as shown in Figure 1 (darken area).

‡The symbol (�) indicates symmetric blocks in the LMIs.
§For simplicity, the same b is considered for all �i , i=1, . . . ,N .
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Thus, any pair (�i ,��i ) belongs to the polytope
�i , i =1, . . .,N given by

�i �
{

�∈R2 :�=
6∑
j=1

� j s j ,�∈U6

}

S = [s1 . . .s6]=
[

--
--
--
--0 0

--
--
--
-- 1−b

--
--
--
-- 1

--
--
--
-- 1

--
--
--
-- b

0 b b 0 −b −b

] (10)

that is, �i represents the convex combination of the
extremes (vertices) of the feasible area.

To construct the (�,��)-space, the Cartesian product
of all �i , i =1, . . .,N must be considered, taking into
account that the new vertices must satisfy �1+·· ·+
�N =1 and ��1+·· ·+��N =0. The resulting polytope,
called �, is then given by

��
{
�∈R2N :�=

M∑
i=1

�i qi , �∈UM

}
(11)

where qi ∈R2N are given vectors. Thus, the first step
to search for a solution to any LMI/BMI depending on
both � and �� is to lift the inequalities to the �-space,
by observing that from (11) one has

[
�

��

]
=Q�, Q=[q1 . . .qM ]∈R2N×M

�∈UM (12)

Therefore, in the case of affine on �(k) parameter-
dependent matrices, that is

X (�(k))=
N∑
i=1

�i (k)Xi , �i (k)=
M∑
j=1

� j Qi j (13)

X (�(k+1)) =
N∑
i=1

(�i (k)+��i (k))Xi

��i (k) =
M∑
j=1

� j Q(i+N ) j

(14)

it follows that

X̄(�) =
N∑
i=1

M∑
j=1

� j Qi j Xi =
M∑
j=1

� j X̄ j (15)

X̃(�) =
N∑
i=1

M∑
j=1

� j (Qi j+Q(i+N ) j )Xi=
M∑
j=1

� j X̃ j (16)

where

X̄ j =
N∑
i=1

Qi j Xi (17)

X̃ j =
N∑
i=1

(Qi j +Q(i+N ) j )Xi (18)

Another preliminary result, the Finsler’s lemma, is
reproduced here for convenience.

Lemma 2
Let �∈Ra,Q=Q′ ∈Ra×a,B∈Rb×a with rank(B)<a,
and B⊥ a basis for the null-space of B (i.e. BB⊥ =0).
The following statements are equivalent.

(i) �′Q�<0,∀B�=0,� �=0;
(ii) B⊥′

QB⊥<0;
(iii) ∃	∈R :Q−	B′B<0;
(iv) ∃X∈Ra×b :Q+XB+B′X′<0.

Proof
See [26]. �

The variables 	 and X in statements (iii) and (iv) of
Lemma 2 allow one to present a more general version
of Lemma 1. As pointed out in [26], these variables
represent extra degree of freedom that may be used,
for instance, for design purposes. By considering the
particular structure

X= [F(�(k))′ F(�(k))′G(�(k+1))′

F(�(k))′H(�(k+1))′]′ (19)

the following condition is obtained.

Theorem 1
For a given �>0, if there exists a bounded matrix
sequence F(�(k)),G(�(k)), P(�(k))′ = P(�(k))>0 and
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H(�(k)), such that

⎡
⎢⎢⎢⎢⎣
P(�(k+1))−F(�(k))−F(�(k))′ F̂12 F̂13 0

(�) F̂22 F̂23 B̃wcl(�(k))

(�) (�) F̂33 D̃wcl(�(k))

(�) (�) (�) −�I

⎤
⎥⎥⎥⎥⎦<0 (20)

F̂12 = F(�(k)) Ãcl(�(k))
′−F(�(k))′G(�(k+1))′

F̂13 = F(�(k))C̃cl(�(k))′−F(�(k))′H(�(k+1))′

F̂22 = G(�(k+1))F(�(k)) Ãcl(�(k))
′

+ Ãcl(�(k))F(�(k))′G(�(k+1))′−P(�(k))

F̂23 = G(�(k+1))F(�(k))C̃cl(�(k))′

+ Ãcl(�(k))F(�(k))′H(�(k+1))′

F̂33 = H(�(k+1))F(�(k))C̃cl(�(k))′

+C̃cl(�(k))F(�(k))′H(�(k+1))′−�I

for all (�(k),��(k))∈�, then the closed-loop system
(6) is asymptotically stable with an upper bound � to
the H∞ performance.

Proof
First, using Schur complement, inequality (20) can be
rewritten as follows:⎡
⎢⎣
P(�(k+1))−F(�(k))−F(�(k))′ F̂12 FC̃cl(�(k))′−F ′H(�(k+1))′

(�) F̂22 F̂23

(�) (�) F̂33

⎤
⎥⎦+�−1F̂4(�(k))F̂4(�(k))′<0 (21)

where

F̂4(�(k))=[0 B̃wcl(�(k))′ D̃wcl(�(k))′]′

Second, by setting

Q=
⎡
⎢⎣
P(�(k+1)) 0 0

0 �−1 B̃wcl(�(k))B̃wcl(�(k))′−P(�(k)) �−1 B̃wcl(�(k))D̃wcl(�(k))′

0 �−1 D̃wcl(�(k))B̃wcl(�(k))′ �−1 D̃wcl(�(k))D̃wcl(�(k))′−�I

⎤
⎥⎦

B= [−I Ãcl(�(k))′ C̃cl(�(k))
′], �=[x̃(k+1)′ x̃(k)′ w(k)′]′

with X given by (19), inequality (21) yields statement
(iv) of Lemma 2. Finally, if statement (iv) of Lemma 2

holds then statement (ii) also holds and Lemma 1
follows immediately. The fact that (iv) ⇒ (ii) can be
verified by multiplying (21) on the left by B⊥ and on
the right by B⊥′

, where

B⊥ =
⎡
⎣ Ãcl(�(k))′ C̃cl(�(k))′

I 0
0 I

⎤
⎦ �

The conditions of Theorem 1 exhibit non-linearities
and must be tested at all points of the simplex UN ,
that is, at an infinite number of points. Moreover,
the unknown parameter-dependent matrices appear
as functions of both �(k+1) and �(k). Hence, the
main goal hereafter is to obtain finite-dimensional
conditions in terms of the vertices of the polytope
P̂ to solve Problem 1, considering the particular
structure for the Lyapunov matrix (similar struc-
tures for F(�(k)),G(�(k+1)) and H(�(k+1))

have been used)

P(�(k)) = �1(k)P1+�2(k)P2+·· ·+�N (k)PN

�(k)∈UN (22)
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More complex structures, as for instance with poly-
nomial dependence on �(k), could be used following
the lines depicted in [27], yielding BMI conditions that
would be more precise at expenses of being much more
involved. Now, considering the �-space presented, using
Schur complement, change of variables and exploring
the extra variables provided by Lemma 2, BMI condi-
tions assuring the existence of such controllers are given
in the next section.

3. MAIN RESULTS

Theorem 2
Given the augmented discrete-time system (3)
and matrix Q as in (12), if there exist matrices
Li ,Hi , Fi ,Gi , Pi = P ′

i >0, with appropriate dimen-
sions, for i =1, . . .,N and a scalar �>0, the control

law (5), with matrices given by

K (�(k)) = [Kx (�(k)) Kd(�(k))]

= L(�(k))(F(�(k))′)−1 (23)

where

L(�(k)) =
N∑
i=1

�i (k)Li , F(�(k))=
N∑
i=1

�i (k)Fi

�(k)∈UN (24)

assures the asymptotic stability of the closed-loop
system (6) and anH∞ guaranteed cost � provided that,
for matrices L̄ i , H̄i , F̄i , Ḡi , P̄i , Âi , B̂ui , B̂wi , Ĉi , D̂ui

and D̂wi given as in (17) and H̃i , G̃i , P̃i as in (18)

�i �

⎡
⎢⎢⎢⎢⎢⎢⎣

P̃i − F̄i − F̄ ′
i F12 F̄i Ĉ

′
i + L̄ ′

i D̂
′
ui − F̄ ′

i H̃
′
i 0

(�) F22 F23 B̂wi

(�) (�) F33 D̂wi

(�) (�) (�) −�I

⎤
⎥⎥⎥⎥⎥⎥⎦

<0

i=1, . . . ,M (25)

F12 = F̄i Â
′
i + L̄ ′

i B̂
′
ui − F̄ ′

i G̃
′
i

F22 = G̃i Fi Â
′
i + Âi F̄

′
i G̃

′
i + G̃i L̄

′
i B̂

′
ui + B̂ui L̄ i G̃

′
i − P̄i

F23 = G̃i F̄i Ĉ
′
i + G̃i L̄

′
i D̂

′
ui + Âi F̄

′
i H̃

′
i + B̂ui L̄ i H̃

′
i

F33 = H̃i F̄i Ĉ
′
i +Ĉi F̄

′
i H̃

′
i + H̃i L̄

′
i D̂

′
ui + D̂ui L̄ i H̃

′
i −�I

�ik �

⎡
⎢⎢⎢⎢⎢⎣

F̄11 F̄12 F̄13 0

(�) F̄22+F̄
′
22−2 P̄i − P̄k F̄23 2B̂wi + B̂wk

(�) (�) F̄33+F̄
′
33−3�I 2D̂wi + D̂wk

(�) (�) (�) −3�I

⎤
⎥⎥⎥⎥⎥⎦<0

i =1, . . .,M, k=1, . . .,M, i �=k (26)

F̄11 = 2 P̃i + P̃k−2F̄i −2F̄ ′
i − F̄k− F̄ ′

k,F̄12= F̄i Â
′
i

+F̄i Â
′
k+F̄k Â

′
i + L̄ ′

i B̂
′
ui+L̄ ′

i B̂
′
uk+L̄ ′

k B̂
′
ui−F̄ ′

i G̃
′
i

−F̄ ′
i G̃

′
k− F̄ ′

k G̃
′
i ,F̄13= F̄i Ĉ

′
i + F̄i Ĉ

′
k+ F̄kĈ

′
i

+L̄ ′
i D̂

′
ui+L̄ ′

i D̂
′
uk+L̄ ′

k D̂
′
ui−F̄ ′

i H̃
′
i−F̄ ′

i H̃
′
k−F̄ ′

k H̃
′
i

F̄22 = G̃i F̄i Â
′
k+ G̃k F̄i Â

′
i + G̃i F̄k Â

′
i + G̃i L̄

′
i B̂

′
uk

+G̃k L̄
′
i B̂

′
ui + G̃i L̄

′
k B̂

′
uiF̄23= G̃i F̄i Ĉ

′
k+ G̃k F̄i Ĉ

′
i

+G̃i F̄kĈ
′
i + G̃i L̄

′
i D̂

′
uk + G̃k L̄

′
i D̂

′
ui + G̃i L̄

′
k D̂

′
ui

+ Âi F̄
′
i H̃

′
k + Âk F̄

′
i H̃

′
i + Âi F̄

′
k H̃

′
i + B̂ui L̄ i H̃

′
k

+B̂uk L̄i H̃
′
i + B̂ui L̄k H̃

′
i

F̄33 = H̃i F̄i Ĉ
′
k+ H̃k F̄i Ĉ

′
i + H̃i F̄kĈ

′
i + H̃i L̄

′
i D̂

′
uk

+H̃k L̄
′
i D̂

′
ui + H̃i L̄

′
k D̂

′
ui
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�ik� �

⎡
⎢⎢⎢⎢⎢⎣

F̃11 F̃12 F̃13 0

(�) F̃22+F̃
′
22−2 P̄i −2 P̄k−2 P̄� F̃23 2(B̂wi + B̂wk+ B̂w�)

(�) (�) F̃33+F̃
′
33−6�I 2(D̂wi + D̂wk+ D̂w�)

(�) (�) (�) −6�I

⎤
⎥⎥⎥⎥⎥⎦<0

i =1, . . .,M−2, k= i+1, . . .,M−1, �=k+1, . . .,M (27)

F̃11 = 2 P̃i +2 P̃k+2 P̃�−2F̄i −2F̄ ′
i −2F̄k

−2F̄ ′
k−2F̄�−2F̄ ′

�

F̃12 = F̄i Â
′
k+ F̄k Â

′
i + F̄i Â

′
�+ F̄� Â

′
i + F̄� Â

′
k + F̄k Â

′
�

+L̄ ′
i B̂

′
uk + L̄ ′

k B̂
′
ui + L̄ ′

i B̂
′
u�+ L̄ ′

� B̂
′
ui + L̄ ′

� B̂
′
uk

+L̄ ′
k B̂

′
u�− F̄ ′

i G̃
′
k− F̄ ′

k G̃
′
i − F̄ ′

i G̃
′
�

−F̄ ′
�G̃

′
i − F̄ ′

�G̃
′
k− F̄ ′

k G̃
′
�

F̃13 = F̄i Ĉ
′
k+ F̄kĈ

′
i + F̄i Ĉ

′
�+ F̄�Ĉ

′
i + F̄�Ĉ

′
k

+F̄kĈ
′
�+ L̄ ′

i D̂
′
uk+ L̄ ′

k D̂
′
ui + L̄ ′

i D̂
′
u�+ L̄ ′

� D̂
′
ui

+L̄ ′
� D̂

′
uk+ L̄ ′

k D̂
′
u�− F̄ ′

i H̃
′
k− F̄ ′

k H̃
′
i − F̄ ′

i H̃
′
�

−F̄ ′
� H̃

′
i − F̄ ′

� H̃
′
k− F̄ ′

k H̃
′
�

F̃22 = G̃i F̄k Â
′
�+ G̃i F̄� Â

′
k

+G̃k F̄i Â
′
�+ G̃k F̄� Â

′
i + G̃� F̄i Â

′
k+ G̃� F̄k Â

′
i

+G̃i L̄
′
k B̂

′
u�+ G̃i L̄

′
� B̂

′
uk + G̃k L̄

′
i B̂

′
u�+ G̃k L̄

′
� B̂

′
ui

+G̃� L̄
′
i B̂

′
uk+ G̃� L̄

′
k B̂

′
ui

F̃23 = G̃i F̄kĈ
′
�+ G̃i F̄�Ĉ

′
k+ G̃k F̄i Ĉ

′
�

+G̃k F̄�Ĉ
′
i + G̃� F̄i Ĉ

′
k + G̃� F̄kĈ

′
i

+Gi L
′
k D̂

′
u�+Gi L

′
� D̂

′
uk+GkL

′
i D̂

′
u�

+GkL
′
� D̂

′
ui +G�L

′
i D̂

′
uk+G�L

′
k D̂

′
ui

+ Âi F̄
′
k H̃

′
�+ Âi F̄

′
� H̃

′
k+ Âk F̄

′
i H̃

′
�+ Âk F̄

′
� H̃

′
i

+ Â� F̄
′
i H̃

′
k + Â� F̄

′
k H̃

′
i + B̂ui L̄k H̃

′
�+ B̂ui L̄� H̃

′
k

+B̂uk L̄i H̃
′
� + B̂uk L̄� H̃

′
i + B̂u� L̄ i H̃

′
k+ B̂u� L̄k H̃

′
i

F̃33 = H̃i F̄kĈ
′
�+ H̃i F̄�Ĉ

′
k+ H̃k F̄i Ĉ

′
�+ H̃k F̄�Ĉ

′
i

+H̃� F̄i Ĉ
′
k+ H̃� F̄kĈ

′
i + H̃i L̄

′
k D̂

′
u�+ H̃i L̄

′
� D̂

′
uk

+H̃k L̄
′
i D̂

′
u�+ H̃k L̄

′
� D̂

′
ui + H̃� L̄

′
i D̂

′
uk+ H̃� L̄

′
k D̂

′
ui

Proof
Applying the following operation [28]

�(�) =
M∑
i=1

�3i �i +
M∑
i=1

M∑
k=1,k �=i

�2i �k�ik

+
M−2∑
i=1

M−1∑
k=i+1

M∑
�=k+1

�i�k���ik� (28)

to the BMIs (25), (26) and (27) inequality (20) follows
immediately considering the particular structure (22)
for the Lyapunov matrix, the change of variables
L(�(k))=K (�(k))F(�(k))′ and the lift of the BMI to
the �-space. Note that the choice of P(�(k)) given by
(22) with Pi>0 assures a lower bound to the sequence.
Finally, the parameter-dependent gain K (�(k)) is
obtained by the change of variables given in (23), what
concludes the proof. �

Note that the actual variables are Li ,Hi , Fi ,Gi , Pi =
P ′
i >0, but the BMIs (25)–(27) are written in terms of

L̄ i , H̄i , F̄i , Ḡi , P̄i , H̃i , G̃i , and P̃i .

Corollary 1
The minimum � attainable by the conditions of
Theorem 2 is given by the optimization problem

min� s.t. (25), (26), (27) (29)

The use of memory controller brings some advan-
tages when dealing with discrete time-delay systems.
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Using extra variables to store the past values of the
control signal, it is possible to cope with Problem 1
without applying more complex Lyapunov functions,
(for instance, the Lyapunov–Krasovskii functional).
Sophisticated Lyapunov functionals may lead to condi-
tions that require a bigger computational effort to
be solved. Whenever possible, the use of memory
controller is suggested when dealing with discrete
time-delay systems since it simplifies the analysis.
Nevertheless, the method could be adapted to cope with
other Lyapunov functions, as the Lyapunov–Krasovskii
one.

Gain scheduled control of discrete-time systems
with time-varying parameters was also addressed
by means of affinely parameter-dependent Lyapunov
functions in [24, 29] and improved in [13] to cope
with systems in which all state-space matrices are
supposed to be affected by time-varying parameters.
In the above works, the design conditions are given
in terms of LMIs. In this paper, however, statement
(iv) in Lemma 2 is applied to reach more general
BMI conditions with multiplier defined as in (19).
The advantages of this approach are due to the extra
variables that can be used in the search for better
performance of the closed-loop system. For example,
lowerH∞ guaranteed costs may be obtained exploring
the new variables G(�(k+1)) and H(�(k+1)). In this
sense, Theorem 1 encompasses the conditions in [29].

The computational time necessary to solve the
sufficient BMI conditions presented here can be esti-
mated in terms of the number of scalar variables
V and the number of BMIs L . These two param-
eters can be written as a function of ñ (number of
augmented states) and N (number of vertices) as
follows.

V = N

(
ñ(ñ+1)

2
+2ñ2+ ñ(q+m)

)
+1

L = (M4+3M3+2M2+6M)

6
, ñ=n+�m

When dealing with problems that take into account
uncertainties, it is clear that the difficulty in solving the
problem increases as the number of uncertain parame-
ters increases. In the framework studied in this paper,

this fact can be particularly noted by the number of
BMIs in Theorem 2. Considering a system with a large
number of uncertainties, the number of vertices used to
describe the whole of possible system outcomes will
also be large, yielding a large number of inequalities in
the conditions of Theorem 2. Naturally, the computation
time will also increase since for the LMI/BMI solvers
available nowadays the computational time depends on
to the number of LMIs/BMIs, on the number of vari-
ables of the problem to be solved and, of course, on
the computer hardware used.

Although other methods could be applied to solve
problem (29), the following algorithm is proposed.

Algorithm 1
Let Gi =0 and Hi =0, i =1, . . .,N . Let 
 be given. Set
k=1 and iterate:

1. Fix the variables Hi and Gi , minimize w.r.t. �k
and determine Fi , Li and Pi .

2. Fix the variables Fi and Li , minimize w.r.t. �k
and obtain Hi ,Gi and Pi .

3. If |�k−�k−1|<
, then stop (no significant
changes).

4. Set k=k+1 and go to step 1.

This approach is sometimes called an Alternating
Semi-Definite Programming method [18]. At each step
a convex optimization problem in terms of LMI condi-
tions is solved. It is worth stressing that the aim here
is not to develop new strategies to solve BMIs. When-
ever feasible, other methods from the literature could
be applied to solve Corollary 1, as the ones appeared
in [18–21]. Concerning the convergence aspect, the
proposed algorithm is a heuristic approach and conse-
quently there is no guaranteed convergence to the local
optimum. However, since steps 1 and 2 are convex
optimization problems, the resulting H∞ cost is non-
increasing with the iterations.

An important aspect of Algorithm 1 is the choice of
the initial values of the variables Gi and Hi . Initial-
izing them as null matrices produces LMI conditions in
step 1 of the first iteration similar to the ones presented
in [13, 24] in terms of stabilization, since the only extra
variables in the LMIs are Fi and, in this case, the
extra degree of freedom provided by Gi and Hi cannot
be explored. As a remedy, an alternative structure to
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matrices Gi and Hi is proposed:

Gi =�I, Hi =[hrs ]i ,hrs =�, i =1, . . .,N (30)

where � is a real number. In this case, the conditions of
Theorem 2 can be tested as LMIs through line searches.

Corollary 2
Given the augmented discrete-time system (3), matrix
Q as in (12) and a scalar �∈R, if there exist matrices
Li , Fi , Pi = P ′

i >0, with appropriate dimensions, i =
1, . . .,N and a scalar �>0 such that (25), (26) and (27)
hold with Gi and Hi given by (30), then there exists
a memory control law (5), ensuring the asymptotic
stability of the closed-loop system (6) and an H∞
guaranteed cost �, with K (�) given as in (23) and (24).

Through a line search on �, the conditions of Corol-
lary 2 can be used to search for stabilizing controllers
even when the conditions [13, 24] and the first iteration
of Algorithm 1 fail. Moreover, if Corollary 2 provides
a feasible solution, the respective � can be used to
initialize Gi and Hi as in (30), assuring that the first
iteration of Algorithm 1 will provide a feasible solution,
probably with a less conservativeH∞ guaranteed cost.

By fixing the variable matrices Fi=F and Li=L (not
depending on �(k)), H∞ robust memory controllers
can be obtained using the conditions of Theorem 2, as
stated in the next corollary.

Corollary 3
Given the augmented discrete-time system (3), if
BMI (25), for i =1, . . .,M , and BMI (26), for
i =1, . . .,M−1, j= i+1, . . .,M , of Theorem 2 are
feasible with fixed variable matrices L and F then the
closed-loop system (6) is asymptotically stable with a
robust memory controller K = L(F ′)−1 and an H∞
guaranteed cost �.

Note that BMI (27) is not necessary in this case,
since it would produce redundant conditions. The line
search strategy could also be applied in this context,
similarly to Corollary 2.

It is worth stressing that for time-varying discrete-
time systems, robust stabilizability implies gain-
scheduling stabilizability, but the converse is not true
[30]. In other words, there may exist systems for
which Theorem 2 and Corollary 2 provide feasible
solutions but Corollary 3 is unfeasible. This fact points

out the importance of studying and improving gain-
scheduling strategies for control systems, specially in
the discrete-time domain.

Finally, the novelties presented here consist espe-
cially in the use of the parameter variation modeling
in the �-space within the gain-scheduling framework
and in the use of BMIs as a tool in the search of better
H∞ performance. To the best of the authors’ knowl-
edge, the use of Lemma 2 with the particular struc-
ture (19) (that results in Theorem 1) has never been
seen in the literature in the context of gain-scheduled
control. Consequently, Theorem 2, obtained through
Theorem 1 and expressions (17), (18) and (22) repre-
sent a novel strategy to face the problem of feedback
control for discrete time-varying systems. The condi-
tions provide good results when compared with other
methods appeared recently in the literature, as shown
in the numerical experiments, and represent a flexible
strategy in the sense that it can be used in four different
contexts, namely, gain scheduling or robust control of
time-varying systems with bounded or unbounded rates
of variation.

4. NUMERICAL EXPERIMENTS

All the experiments have been performed in a PC
equipped with: Athlon 64X2 6000+ (3.0 GHz), 2GB
RAM (800MHz), using Linux (Ubuntu), Matlab
(7.0.1) and the SDP solver SeDuMi [11] interfaced by
the parser YALMIP [12]. The numerical complexity
associated with the proposed conditions and the ones
from the literature used for comparison purposes are
estimated in terms of the computational times given in
seconds. Only the time required to solve the LMIs is
considered, since the time necessary to build the set of
LMIs is highly dependent on the LMI parser interface.
Particularly with respect to the iterative procedure
given in Algorithm 1, the time of the i th iteration is
the cumulated total time.

Example I
This example is concerned with the fourth-order two-
mass-spring system presented in [31] that is repro-
duced here in Figure 2. The same transfer function is
considered.
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m1 m2

k1 k2

x1

x2u

f1 f2

Figure 2. Mass-spring system.

The masses and the stiffness of the second spring
are assumed constant as m1=2,m2=1,k2=0.5. The
friction forces f1 and f2 are associated with the viscous
friction coefficient c0. The stiffness of the first spring
and the viscous friction coefficient are assumed to be
time-varying in the ranges

1�k1(k)�13, 1�c0(k)�13

resulting in a polytope of N =4 vertices, obtained by
evaluating the following discrete-time equation at the
extreme values of the parameters.

x(k+1)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.1 0

0 1 0 0.1

−0.1(k1+k2)

m1

0.1k2
m1

1− 0.1c0
m1

0

0.1k2
m2

−0.1k2
m2

0 1− 0.1c0
m2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
x(k)+

⎡
⎢⎢⎢⎢⎢⎣

0

0

0.1

m1

0

⎤
⎥⎥⎥⎥⎥⎦u(k) (31)

The sampled version (31) of the two-mass-spring
system was obtained by using the Euler’s first-order
approximation for the derivative with a sampling
time of 0.1s. The other system matrices are Ci =
[0 1 0 0], Bwi =[0 0.1 0.1 0]′,Dwi =0.01,Dui =
0, i=1, . . .,4. Additionally, it is also investigated
the situation where the model is affected by a one
step delayed input, considering Bdui =[0 0 1 0]′ and
Ddui =0, i=1, . . .,4. The results obtained by the
methods [[24] Theorem 4] (gain-scheduling control),
[[24] Theorem 5] (robust control), Theorem 2 and
Corollary 3 are shown in Table I for the case of
arbitrarily fast variations of the parameters (b=1) and
for slow variations (b=0.05), that is the value of the
parameters are constrained to vary only 5% from the
instant k to the instant k+1.

In the case b=1, the conditions of [24] and the ones
proposed in this paper produce practically the same
H∞ guaranteed costs. On the other hand, for b=0.05
(slow parameter variation), the method proposed yields
significative less conservative results, illustrating that
the proposed approach can take advantage when
bounds on the parameters variation are considered. In
general, this is the case for mechanical systems, as
in this example, where the parameters c0 and k2 are
assumed to vary slowly. The improvements in the H∞
guaranteed costs, when considering bounds on the rates
of variation, obtained by Theorem 2 and Corollary 3
were 47 and 30%, respectively, for the free delay case.
For the delayed input case, the improvements are larger,
that is 54 and 40%, respectively, for Theorem 2 and
Corollary 3. Concerning the computational complexity,
the time demanded by the proposed approach is higher
due to the conversion of the parameters to the �-space
domain. In this example, the four parameters in the
original polytopic domain yield 28 vertices in the
�-space domain. This is the price to be paid in order
to take into account limited rates of variation.

Finally, a time simulation has been performed
for the delayed input case with the gain-scheduled
controllers obtained through the proposed condi-
tions. The parameters k2(k) and co(k) vary ≈4% per
instant of time, starting from their minimum values
until their maximum. The input noise was generated
using the Matlab command w(k)=0.2∗randn for
0�k�100. The noise and the outputs (considering
Dw =0 and x0=0) of the system, using the synthesized
gain-scheduling controllers for b=1 and b=0.05,
are depicted in Figure 3. Clearly, the case b=0.05
presents a better disturbance rejection. In fact, the
total error e=∑100

i=1 |y(k)| is e=7.91 and e=4.29 for
the cases b=1 and b=0.05, respectively, yielding an
improvement of 45%.
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Table I. Results and numerical complexity associated with the methods of [24] and the conditions of Theorem 2 and
Corollary 3 for the control design problem in Example I.

Method [[24], T4] [[24], T5] T2it=1 C3it=2 T2it=1 C3it=2

b 1 1 1 1 0.05 0.05
� (�=0) 0.80 1.50 0.82 1.48 0.43 1.03
Time (s) 0.5 0.4 460.8 69.7 810.5 63.2
� (�=1) 1.40 2.52 1.39 2.49 0.63 1.55
Time (s) 0.6 0.4 1415.5 92.7 1351.0 116.3

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

time

y(k), b = 1
y(k), b = 0.05

noise

Figure 3. Time simulation of the mass-spring system, with a one-step delay, stabilized through the conditions of Theorem 2
for the cases b=1 and b=0.05.

Table II. Results and numerical complexity associated with the methods [13] and the conditions of Theorem 2 in the
gain-scheduling control design given in Example II.

Method [13] T 2it=1 T 2it=2 T2it=3 T2it=4 T2it=5 T 2it=6

� 20.09 14.39 9.63 8.60 8.27 8.14 8.06
Improvement (%) — 28.33 52.04 57.15 58.82 59.46 59.87
Time (s) 0.12 1.12 2.07 2.98 3.91 4.80 5.70

Example II
Consider system (3) with vertices (borrowed from [[13]
Example II]) given by

Ã1 =
[
0.28 −0.315

0.63 −0.84

]
, Ã2=

[
0.52 0.77

−0.7 −0.07

]

B̃u1 =
[
1

0

]
, B̃u2=

[
0

1

]
(32)

B̃wi =[1 0]′, C̃i =[1 0] and D̃wi = D̃ui =0, i=1,2.
This system with arbitrarily fast parameters was also
studied in [24], but in a simpler case where matrix
B̃u was fixed and time-invariant (i.e. B̃u1= B̃u2). The
aim here is to compare the gain-scheduling design
conditions from [13] (capable to cope with time-
varying Bu(�(k))) with the BMI approach proposed
in Theorem 2. Additionally, it is considered that the
system is affected by one single delay (one step) with
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Bdui =[0 1]′ and Ddui=0, i=1,2. Table II shows the
improvements due to the BMI approach over [13]
as the number of iterations evolve. As can be seen
in Table II, the H∞ upper bound � was reduced in
approximately 59.87% with six iterations, providing
better rejection of disturbances.

5. CONCLUSION

The H∞ gain-scheduled memory controller for LPV
discrete-time systems, with bounded rates of variation,
belonging to a polytope has been addressed in this
paper. The memory of the controller, used to store the
previous values of the control signal, was modeled as
a new state-space variable leading to an augmented
system representation. A sufficient condition has been
proposed in terms of BMIs described only at the
vertices of the polytope. Extra variables provided by
the Finsler’s lemma were used to derive the BMI
conditions. The controller design is accomplished
by means of an optimization problem that combines
convex optimization and line searches. An extension to
deal with the design of H∞ robust memory controllers
has also been given. The conditions provide good
results when compared with other methods appeared
recently in the literature, as shown in the numerical
experiments.
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