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Abstract

In this paper symbolic-computation methods are used to design simple, fixed-structure, robust controllers
for nonlinear systems. Design specifications are reduced to logically quantified polynomial inequalities. The
quantifier-elimination (QE) software package QEPCAD is used to eliminate quantifiers on state and plant
parameters, to obtain regions of admissible controller parameters, and to guarantee robust stability and
performance.
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I. Introduction

It is known that many linear robust multiobjective feedback design problems with fixed

controller structures can be reduced to the study of multivariate polynomial inequalities

(MPIs). See, for example, [1], [2]. A function of many variables is said to be a multivariate

polynomial function if it is a polynomial in any given variable when all the other variables

are held fixed. MPIs are then collections of multivariate polynomial inequalities.

In this brief paper we show that some robust nonlinear problems can also be reduced to MPI

problems, with logic quantifiers of the type “for all”, ∀ and “there exists”, ∃, on various

variables, and we explore the use of quantifier elimination (QE) theory and software to

solve problems of modest complexity. In particular we will use the Hamilton-Jacobi-Bellman

(HJB) inequality to design fixed-structure controllers which are robustly stable and satisfy

given guaranteed-cost bounds. The key assumption we need is that the plant nonlinearities,

feedback laws, and guaranteed-cost bounds are all given multivariate polynomial functions

in the variables of interest. Quantifier elimination theory is then used to define a region of

controller parameter space where the quantified MPIs in question are satisfied.

The robust nonlinear feedback design problem we will consider is defined in section II,

followed by a discussion of quantifier elimination theory and software in section III. Some

numerical examples are given section IV and our conclusions are given in section V.

II. The Robust Nonlinear Feedback Design Problem

Consider a nonlinear plant with dynamics

ẋ = f(x, u, p), x ∈ Ω, p ∈ P (1)

where x is the state of the plant within a specified set Ω, p is an uncertain parameter vector

within the specified range P and u is a control input. The components of the vector f(x, u, p)

are assumed to be multivariate polynomials with respect to the entries of the vectors x, u and
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p. This does restrict the class of nonlinear systems that can be considered, but more general

systems can often be approximated by polynomial functions via Taylor series expansions.

The control input is assumed to be a fixed-structure control law of the form

u = ψ(x, q) ,

where ψ(x, q) is polynomial in the components of the vectors x and q , and q is a vector of

design parameters.

We assume a performance measure of the form

Ṽ (x(0)) =
∫

∞

0
ℓ(x, u) dt ,

where ℓ(x, u) is a non-negative multivariable polynomial function in the components of x ad

u. Let V (x) be a given multivariate polynomial function which is positive for all nonzero x.

It is known, see for example reference [3], that if the HJB inequality

F (x, p, q) = ℓ(x, ψ(x, q)) + (
dV

dx
)T f(x, ψ(x, q), p) < 0 , (2)

is satisfied for all x 6= 0, and for all admissible p, then V (x(0)) is a guaranteed bound on the

performance measure Ṽ (x(0)). Since the function F (x, p, q) is a multivariate polynomial,

given the assumptions on V , f , and ψ, QE methods can then be used to explore admissible

values of the design vector q. Robust stability may also be explored by letting ℓ(x, u) = 0 in

(2) and using V (x) as a Lyapunov function.

III. QE Computation and Software

Given the set of polynomials with integer coefficients Pi(X,Y ), 1 ≤ i ≤ s where X

represents a k-dimensional vector of quantified real variables and Y represents a l dimensional

vector of unquantified real variables, let X [i] be a block of ki quantified variables, Qi be one

of the quantifiers ∃ (there exists) or ∀ (for all), and let Φ(Y ) be the quantified formula

Φ(Y ) =
(

Q1X
[1], ..., QwX

[w]
)

F (P1, . . . , Ps) , (3)

where F (P1, ..., Ps) is a quantifier free Boolean formula, that is a formula containing the

Boolean operators ∧ (and) and ∨ (or), operating on atomic predicates of the form:

Pi(Y,X
[1], ..., X [w]) ≥ 0 or Pi(Y,X

[1], ..., X [w]) > 0 or Pi(Y,X
[1], ..., X [w]) = 0. We can now
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state the general quantifier elimination problem

General Quantifier Elimination Problem: Find a quantifier-free Boolean formula Ψ(Y )

such that Φ(Y ) is true if and only if Ψ(Y ) is true.

In linear control problems, the unquantified variables are generally the compensator pa-

rameters, represented by the parameter vector Y = q, and the quantified variables are the

plant parameters, represented by the plant parameter vector p, and the frequency variable

ω. Uncertainty in plant parameters are characterized by quantified formulas of the type

∀(pi) [pi ≤ pi ≤ pi] where pi and pi are rational numbers. The quantifier-free formula Ψ(q)

then represents a characterization of the compensator design.

An important special problem is the QE problem with no unquantified variables (free

variables), i.e. l = 0. This problem is referred to as the General Decision Problem.

General Decision Problem: With no unquantified variables, i.e. l = 0, determine if the

quantified formula given in (3) is true or false.

The general decision problem may be applied to the problem of existence of compensators

that meet given specifications, in which case an “existence” quantifier is applied to the

compensator parameter q.

Quantifier elimination (QE) theory in nonlinear systems allows one to eliminate logic

quantifiers such as, ∀, and, ∃, from multivariable inequalities of the form

(

Q1X
[1], ..., QwX

[w]
)

F (x, p, q) > 0, x ∈ Ω, p ∈ P , (4)

where F is a multivariate polynomial function (see (3)), and where x, p and q are vectors

related to the nonlinear feedback systems, in particular x represents the state of the system

being controlled (plant) which is within the set specified by Ω, p represents the uncertain

plant parameters which are within the set specified by P , and q represents the controller

“design” parameters. When the quantifiers on the controller parameters are “existence”

quantifiers, i.e.

(∃q) (∀p ∈ P) (∀x ∈ Ω) [F (x, p, q) > 0] ,
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the theory tells us if a solution to the robust nonlinear feedback problem exists. By elimi-

nating only the “for all” quantifiers on the plant parameters and the system state, i.e.

(∀p ∈ P)(∀x ∈ Ω)[F (x, p, q) > 0] ,

a quantifier-free Boolean formula Ψ(q) is obtained which defines the set of controller param-

eters which satisfy given specifications.

The application of QE theory to the design of linear feedback systems is discussed in [4],

[2]. Algorithms for solving general QE problems were first given by [5] and [6], and are

commonly called Tarski-Seidenberg decision procedures. Tarski showed that QE is solvable

in a finite number of “algebraic” steps, but his algorithm and later modifications are dou-

bly exponential in the size of the problem. Researchers in control theory have been aware

of Tarski’s results and their applicability to control problems since the 1970’s [7], but the

complexity of the computations and lack of software limited their applicability. In [8] a theo-

retically more efficient QE algorithm that uses a cylindrical algebraic decomposition (CAD)

approach is introduced. However, this algorithm was not capable of effectively handling

nontrivial problems. More recently Hong and Collins [9], [10], [11] introduced a significantly

more efficient Partial CAD QE algorithm.

The Partial Cylindrical Algebraic Decomposition algorithm, has been developed, see [10],

for the computer elimination of quantifiers on polynomial inequalities. This algorithm re-

quires a finite number of “algebraic” operations. A key assumption for all computer elimina-

tion algorithms is that the coefficients in the polynomial functions be integers. This is not a

serious limitation since one can generally approximate a real number by a rational number,

and one can clear fractions in the polynomial functions to obtain integer coefficients. How-

ever the number of operations is still doubly exponential in the number of variables, so that

only problems of modest complexity can actually be computed. See [12] for a discussion of

computational complexity in the quantifier elimination problem. A software package called

QEPCAD (Quantifier Elimination by Partial Cylindrical Algebraic Decomposition) has been

developed for the solution of quantifier elimination problems.

An excellent introduction to quantifier elimination theory and its applications to control

system design may be found in the monograph of [13].

In the examples that follow we use the software package QEPCAD to solve some simple

robust nonlinear control problems. It should be noted that numerical techniques can also be
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used to ”eliminate quantifiers”. For example in [1] and [14], branch-and-bound/Bernstein

(BBB) polynomial methods are used for this purpose. Indeed numerical techniques may

be applicable to more complex problem than those that can be handled by QE algorithm.

However numerical techniques generally require a priori bounds on design parameter range,

and are also limited by problem size. A major advantage of QE algorithm is that they require

no approximations or a priori parameter ranges. Recently, [15], randomized algorithms have

been suggested for the solution of the class of polynomial problems considered here. Such

algorithms are applicable to much more complex systems than can be treated with QE

or BBB methods, but one must settle for “approximate probabilistic” results, rather than

“exact deterministic” results.

IV. Examples

Example 1: This example is taken from [16]. The nonlinear system is given by










ẋ1 = x1x2 + px3
1

ẋ2 = u
,

where p ∈ [−0.25, 0.25]. We are interested in designing a simple controller which guarantees

robust local asymptotic stability of the origin. In the above reference, the nominal system

(p = 0) is globally stabilized by the control law

u = −8x3
1 − 8x2 − 8x2

1x2 ,

as may be obtained from the control Lyapunov function

V (x) =
x2

1 + (x2 + x2
1)

2

2
.

Here we use this same Lyapunov function, and a control law of the form

u = −8x2
1 − qx2 − 8x2

1x2 ,

with design parameter q, to design a locally robustly stabilizing feedback system. In this

case

V̇ (x) = F (x1, x2, q,p) ,

where

F (x1, x2, q, p) = (x1 + 2x1(x2 + x2
1))(x1x2 + px3

1)(−8x2
1 − qx2 − 8x2

1x2) .
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The condition V̇ (x) < 0, for all (x1, x2) in the region

Ωx = {0 < |x1| ≤ 0.5, 0 < |x2| ≤ 0.5} ,

and all p ∈ [−0.25, 0.25] results in the quantifier formula

(∀(x1, x2) ∈ Ωx)(∀p ∈ [−0.25, 0.25]) [F (x1, x2, q, p) > 0] .

If QEPCAD is used to eliminate the quantifiers on x1, x2, and p, the following quantifier-free

formula in q is produced

Ψ(q) = [q2 + 17q + 49 ≤ 0∧

16q3 + 1996q2 + 40729q + 151424 ≥ 0

∨[64q2 + 880q + 1561 ≤ 0∧

16q3 + 1996q2 + 40729q + 151424 ≤ 0]

. (5)

¿From the computation of roots of the various polynomials in (5), the following admissible

range of design-parameter values is obtained

−11.6758 ≤ q ≤ −3.6782.

Example 2: This problem is taken from [17] where the stabilization of the following system

is studied:










ẋ1 = x2

ẋ2 = u+ p(x3
1 − x1)

,

where p is an uncertain parameter with p ∈ [−1, 1]. The problem is to design a state-

feedback controller such that the closed-loop system is at least locally stable and the following

performance index

Ṽ (x(0)) =
∫

∞

0 ℓ(x, u)dt

=
∫

∞

0 (x2
1 + x2

2 + u2)dt ,

is bounded (at least locally) by the function

V (x) = 10(x2
1 + x1x2 + x2

2) .

We assume a simple linear control law of the form

u(x, q) = qx1 − 3x2 ,
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with design parameter q. In this case

V̇ (x) + ℓ(x, u) = F (x, q1, p) ,

where

F (x, q, p) = 10[(2x1 + x2)x2 + (2x2 + x1)(qx1 − 3x2 + p(x1 − x3
1))]

+(1 + q2)x2
1 + 10x2

2 − 6qx1x2 .

If Ωx = {0 < |x1| ≤ 3/2, 0 < |x2| ≤ 3/2}, the following quantified formula guarantees local

robust stability and performance

(∀(x ∈ Ωx)) (∀p ∈ [−1, 1]) [F (x, q, p) < 0] .

The quantifier-free formula returned by QEPCAD is given by

Ψ(q) = [P1(q1) ≤ 0 ∧ P2(q1) ≤ 0] ∨ [P3(q1) ≤ 0 ∧ P2(q1) ≥ 0] , (6)

where the polynomials P1, P2, P3 have the following expressions

P1(q1) = 356q2
1 + 620q1 − 615,

P2(q1) = 2q8
1 + 80q7

1 + 1213q6
1 + 9020q5

1 +

39832q4
1 + 112400q3

1 + 803q2
1 −

78840q1 + 382482,

P3(q1) = 356q2
1 + 2020q1 + 2385 . (7)

By computing the roots of the equations involved in formula (7) we obtain the range of q1

which satisfies (6) are

−2.4474 ≤ q1 ≤ −1.6754

Note the complexity of the polynomials in the quantifier-free formula (6). It is obvious that

quantifier-elimination “by hand” in this case would have been very difficult.

V. Conclusions

Many robust nonlinear feedback design problems can be reduced to quantifier-elimination

problems. While software exists for the computer solution of quantifier elimination problems,

the complexity of the problem is severely limited due to the inherent complexity of the basic

QE problem. However with the assumption of simple, fixed structures for feedback, some

modest problems can be solved as illustrated by the examples above.
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