
Gradient and Hamiltonian DynamicsApplied to Learning in Neural Networks�James W. Howse Chaouki T. Abdallah Gregory L. HeilemanDepartment of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerque, NM 87131AbstractThe process of machine learning can be considered in two stages: modelselection and parameter estimation. In this paper a technique is presentedfor constructing dynamical systems with desired qualitative properties. Theapproach is based on the fact that an n-dimensional nonlinear dynamicalsystem can be decomposed into one gradient and (n � 1) Hamiltonian sys-tems. Thus, the model selection stage consists of choosing the gradient andHamiltonian portions appropriately so that a certain behavior is obtainable.To estimate the parameters, a stably convergent learning rule is presented.This algorithm has been proven to converge to the desired system trajectoryfor all initial conditions and system inputs. This technique can be used todesign neural network models which are guaranteed to solve the trajectorylearning problem.1 IntroductionA fundamental problem in mathematical systems theory is the identi�cation of dy-namical systems. System identi�cation is a dynamic analogue of the functional ap-proximation problem. A set of input-output pairs fu(t);y(t)g is given over some timeinterval t 2 [Ti; Tf ]. The problem is to �nd a model which for the given input sequencereturns an approximation of the given output sequence. Broadly speaking, solving anidenti�cation problem involves two steps. The �rst is choosing a class of identi�ca-tion models which are capable of emulating the behavior of the actual system. Thesecond is selecting a method to determine which member of this class of models bestemulates the actual system. In this paper we present a class of nonlinear models anda learning algorithm for these models which are guaranteed to learn the trajectoriesof an example system. Algorithms to learn given trajectories of a continuous timesystem have been proposed in [6], [8], and [7] to name only a few. To our knowledge,no one has ever proven that the error between the learned and desired trajectoriesvanishes for any of these algorithms. In our trajectory learning system this error isguaranteed to vanish. Our models extend the work in [1] by showing that Cohen'ssystems are one instance of the class of models generated by decomposing the dynam-ics into a component normal to some surface and a set of components tangent to thesame surface. Conceptually this formalism can be used to design dynamical systemswith a variety of desired qualitative properties. Furthermore, we propose a provably�This paper was presented at the Advances in Neural Information Processing Systemsconference in November, 1995. 1



convergent learning algorithm which allows the parameters of Cohen's models to belearned from examples rather than being programmed in advance. The algorithm isconvergent in the sense that the error between the model trajectories and the de-sired trajectories is guaranteed to vanish. This learning procedure is related to onediscussed in [5] for use in linear system identi�cation.2 Constructing the ModelFirst some terminology will be de�ned. For a system of n �rst order ordinary di�er-ential equations, the phase space of the system is the n-dimensional space of all statecomponents. A solution trajectory is a curve in phase space described by the di�er-ential equations for one speci�c starting point. At every point on a trajectory thereexists a tangent vector. The space of all such tangent vectors for all possible solutiontrajectories constitutes the vector �eld for this system of di�erential equations.The trajectory learning models in this paper are systems of �rst order ordinary dif-ferential equations. The form of these equations will be obtained by considering thesystem dynamics as motion relative to some surface. At each point in the state spacean arbitrary system trajectory will be decomposed into a component normal to thissurface and a set of components tangent to this surface. This approach was suggestedto us by the results in [4], where it is shown that an arbitrary n-dimensional vector�eld can be decomposed locally into the sum of one gradient vector �eld and (n� 1)Hamiltonian vector �elds. The concept of a potential function will be used to de-�ne these surfaces. A potential function V(x) is any scalar valued function of thesystem states x = [x1; x2; : : : ; xn]y which is at least twice continuously di�erentiable(i.e. V(x) 2 Cr : r � 2). The operation [�]y denotes the transpose of the vector. Ifthere are n components in the system state, the function V(x), when plotted withrespect all of the state components, de�nes a surface in an (n+1)-dimensional space.There are two curves passing through every point on this potential surface which areof interest in this discussion, they are illustrated in Figure 1(a). The dashed curve is
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x0Q3(x)rxV(x)jx0(x� x0)yrxV(x)jx0 = 0
Q2(x)rxV(x)jx0�rxV(x)jx0 (b)Figure 1: (a) The potential function V(x) = x21 (x1�1)2+x22 plotted versus its two depen-dent variables x1 and x2. The dashed curve is called a level surface and is givenby V(x) = 0:5. The solid curve follows the path of steepest descent through x0.(b) The partitioning of a 3-dimensional vector �eld at the point x0 into a 1-dimensional portion which is normal to the surface V(x) = K and a 2-dimensionalportion which is tangent to V(x) = K. The vector�rxV(x)jx0 is the normal vec-tor to the surface V(x) = K at the point x0. The plane (x�x0)yrxV(x)jx0 = 0contains all of the vectors which are tangent to V(x) = K at x0. Two linearlyindependent vectors are needed to form a basis for this tangent space, the pairQ2(x)rxV(x)jx0 and Q3(x)rxV(x)jx0 that are shown are just one possibility.2



referred to as a level surface, it is a surface along which V(x) = K for some constantK. Note that in general this level surface is an n-dimensional object. The solid curvemoves downhill along V(x) following the path of steepest descent through the pointx0. The vector which is tangent to this curve at x0 is normal to the level surfaceat x0. The system dynamics will be designed as motion relative to the level surfacesof V(x). The results in [4] require n di�erent local potential functions to achievearbitrary dynamics. However, the results in [1] suggest that a considerable numberof dynamical systems can be achieved using only a single global potential function.A system which is capable of traversing any downhill path along a given potentialsurface V(x), can be constructed by decomposing each element of the vector �eldinto a vector normal to the level surface of V(x) which passes through each pointand a set of vectors tangent to the level surface of V(x) which passes through thesame point. So the potential function V(x) is used to partition the n-dimensionalphase space into two subspaces. The �rst contains a vector �eld normal to somelevel surface V(x) = K for K 2 R, while the second subspace holds a vector �eldtangent to V(x) = K. The subspace containing all possible normal vectors to then-dimensional level surface at a given point, has dimension one. This is equivalentto the statement that every point on a smooth surface has a unique normal vector.Similarly, the subspace containing all possible tangent vectors to the level surface ata given point has dimension (n � 1). An example of this partition in the case of a3-dimensional system is shown in Figure 1(b). Since the space of all tangent vectorsat each point on a level surface is (n � 1)-dimensional, (n � 1) linearly independentvectors are required to form a basis for this space.Mathematically, there is a straightforward way to construct dynamical systems whicheither move downhill along V(x) or remain at a constant height on V(x). In thispaper, dynamical systems which always move downhill along some potential surfaceare called gradient-like systems. These systems are de�ned by di�erential equationsof the form_x = �P (x)rxV(x); (1)where P (x) is a matrix function which is symmetric (i.e. P y = P ) and positivede�nite at every point x, and where rxV(x) = [ @V@x1 ; @V@x2 ; : : : ; @V@xn ]y. These systemsare similar to the gradient 
ows discussed in [2]. The trajectories of the systemformed by Equation (1) always move downhill along the potential surface de�ned byV(x). This can be shown by taking the time derivative of V(x) which is _V(x) =�[rxV(x)]y P (x) [rxV(x)] � 0. Because P (x) is positive de�nite, _V(x) can only bezero where rxV(x) = 0, elsewhere _V(x) is negative. This means that the trajectoriesof Equation (1) always move toward a level surface of V(x) formed by \slicing" V(x)at a lower height, as pointed out in [2]. It is also easy to design systems which remainat a constant height on V(x). Such systems will be denoted Hamiltonian-like systems.They are speci�ed by the equation_x = Q(x)rxV(x); (2)where Q(x) is a matrix function which is skew-symmetric (i.e. Qy = �Q) at everypoint x. These systems are similar to the Hamiltonian systems de�ned in [2]. Theelements of the vector �eld de�ned by Equation (2) are always tangent to some levelsurface of V(x). Hence the trajectories of this system remain at a constant height onthe potential surface given by V(x). Again this is indicated by the time derivativeof V(x), which in this case is _V(x) = [rxV(x)]yQ(x) [rxV(x)] = 0. This indicatesthat the trajectories of Equation (2) always remain on the level surface on which thesystem starts. So a model which can follow an arbitrary downhill path along the3



potential surface V(x) can be designed by combining the dynamics of Equations (1)and (2). The dynamics in the subspace normal to the level surfaces of V(x) can bede�ned using one equation of the form in Equation (1). Similarly the dynamics in thesubspace tangent to the level surfaces of V(x) can be de�ned using (n� 1) equationsof the form in Equation (2). Hence the total dynamics for the model are_x = �P (x)rxV(x) + nXi=2Qi(x)rxV(x): (3)For this model the number and location of equilibria is determined by the functionV(x), while the manner in which the equilibria are approached is determined by thematrices P (x) and Qi(x).If the potential function V(x) is bounded below (i.e. V(x) > Bl 8 x 2 Rn , whereBl is a constant), eventually increasing (i.e. limkxk!1 V(x) ! 1) , and has onlya �nite number of isolated local maxima and minima (i.e. in some neighborhoodof every point where rxV(x) = 0 there are no other points where the gradientvanishes), then the system in Equation (3) satis�es the conditions of Theorem 10in [1]. Therefore the system will converge to one of the points where rxV(x) = 0,called the critical points of V(x), for all initial conditions. Note that this systemis capable of all downhill trajectories along the potential surface only if the (n � 1)vectors Qi(x)rxV(x) 8 i = 2; : : : ;n are linearly independent at every point x. Itis shown in [1] that the potential functionV(x) = C Z x1X1 L1(
) d
 + nXi=2 � 12 (xi � Li(x1))2 + 12 Z x1Xi L1(
) [L0i(
)]2 d
 � (4)satis�es these three criteria. In this equation Li(x1) 8 i = 1; : : : ;n are interpolationpolynomials, C is a real positive constant, Xi 8 i = 1; : : : ;n are real constants chosenso that the integrals are positive valued, and L0i(x1) � dLidx1 .3 The Learning RuleIn Equation (3) the number and location of equilibria can be controlled using thepotential function V(x), while the manner in which the equilibria are approached canbe controlled with the matrices P (x) and Qi(x). If it is assumed that the locationsof the equilibria are known, then a potential function which has local minima andmaxima at these points can be constructed using Equation (4). The problem oftrajectory learning is thereby reduced to the problem of parameterizing the matricesP (x) and Qi(x) and �nding the parameter values which cause this model to bestemulate the actual system. If the elements P (x) and Qi(x) are correctly chosen,then a learning rule can be designed which makes the model dynamics converge tothat of the actual system. Assume that the dynamics given by Equation (3) are aparameterized model of the actual dynamics. Using this model and samples of theactual system states, an estimator for states of the actual system can be designed. Thebehavior of the model is altered by changing its parameters, so a parameter estimatormust also be constructed. The following theorem provides a form for both the stateand parameter estimators which guarantees convergence to a set of parameters forwhich the error between the estimated and target trajectories vanishes.Theorem 3.1. Given the model system_x = kXi=1Ai f i(x) +B g(u) (5)where Ai 2 Rn�n and B 2 Rn�m are unknown, and f i(�) and g(�) are known smoothfunctions such that the system has bounded solutions for bounded inputs u(t). Choose4



a state estimator of the form_̂x =Rs (x̂� x) + kXi=1 Âi f i(x) + B̂ g(u) (6)where Rs is an (n�n) matrix of real constants whose eigenvalues must all be in theleft half plane, and Âi and B̂ are the estimates of the actual parameters. Chooseparameter estimators of the form_̂Ai = �Rp (x̂� x) �f i(x)�y 8 i = 1; : : : ; k_̂B = �Rp (x̂� x) �g(u)�y (7)where Rp is an (n � n) matrix of real constants which is symmetric and positivede�nite, and (x̂ � x) ���y denotes an outer product. For these choices of state andparameter estimators limt!1(x̂(t)�x(t)) = 0 for all initial conditions. Furthermore,this remains true if any of the elements of Âi or B̂ are set to 0, or if any of thesematrices are restricted to being symmetric or skew-symmetric.The proof of this theorem appears in [3]. Note that convergence of the parameterestimates to the actual parameter values is not guaranteed by this theorem. Themodel dynamics in Equation (3) can be cast in the form of Equation (5) by choosingeach element of P (x) and Qi(x) to have the formPrs = nXj=1 l�1Xk=0 �rsjk #k(xj) and Qrs = nXj=1 l�1Xk=0�rsjk %k(xj); (8)where f#0(xj); #1(xj); : : : ; #l�1(xj)g and f%0(xj); %1(xj); : : : ; %l�1(xj)g are a set of lorthogonal polynomials which depend on the state xj . There is a set of such poly-nomials for every state xj , j = 1; 2; : : : ;n. The constants �rsjk and �rsjk determinethe contribution of the kth polynomial which depends on the jth state to the valueof Prs and Qrs respectively. In this case the dynamics in Equation (3) become_x = nXj=1 l�1Xk=0(�jk �#k(xj)rxV(x)�+ nXi=2 �ijk �%ik(xj)rxV(x)�)+� g(u(t)) (9)where �jk is the (n�n) matrix of all values �rsjk which have the same value of j andk. Likewise �ijk is the (n � n) matrix of all values �rsjk , having the same value ofj and k, which are associated with the ith matrix Qi(x). This system has m inputs,which may explicitly depend on time, that are represented by the m-element vectorfunction u(t). The m-element vector function g(�) is a smooth, possibly nonlinear,transformation of the input function. The matrix � is an (n�m) parameter matrixwhich determines how much of input s 2 f1; : : : ;mg e�ects state r 2 f1; : : : ;ng.Appropriate state and parameter estimators can be designed based on Equations (6)and (7) respectively.4 Simulation ResultsNow an example is presented in which the parameters of the model in Equation (9)are trained, using the learning rule in Equations (6) and (7), on one input signal andthen are tested on a di�erent input signal. The actual system has three equilibriumpoints, two stable points located at (1; 3) and (3; 5), and a saddle point located at(2 � p33 ; 4 + p33 ). In this example the dynamics of both the actual system and themodel are given by _x1_x2! =  P1 + P2 x21 + P3 x22 00 P4 + P5 x21 + P6 x22!0BB@ @V@x1@V@x21CCA+ 0 �fP7 + P8 x1 + P9 x2gP7 + P8 x1 + P9 x2 0 !0BB@ @V@x1@V@x21CCA+ P100 !u(t) (10)5



where V(x) is de�ned in Equation (4) and u(t) is a time varying input. For the actualsystem the parameter values were P1 = P4 = �4, P2 = P5 = �2, P3 = P6 = �1,P7 = 1, P8 = 3, P9 = 5, and P10 = 1. In the model the 10 elements Pi aretreated as the unknown parameters which must be learned. Note that the �rst matrixfunction is positive de�nite if the parameters P1{P6 are all negative valued. Thesecond matrix function is skew-symmetric for all values of P7{P9. The two inputsignals used for training and testing were u1 = 10000 �sin 13 1000 t+ sin 23 1000 t� andu2 = 5000 sin 1000 t. The phase space responses of the actual system to the inputs u1and u2 are shown by the solid curves in Figures 3(b) and 3(a) respectively. Notice thatboth of these inputs produce a periodic attractor in the phase space of Equation (10).In order to evaluate the e�ectiveness of the learning algorithm the Euclidean distancebetween the actual and learned state and parameter values was computed and plottedversus time. The results are shown in Figure 2. Figure 2(a) shows these statistics when
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(b)Figure 2: (a) The state and parameter errors for training using input signal u1. The solidcurve is the Euclidean distance between the state estimates and the actual statesas a function of time. The dashed curve shows the distance between the estimatedand actual parameter values versus time.(b) The state and parameter errors for training using input signal u2.training with input u1, while Figure 2(b) shows the same statistics for input u2. Thesolid curves are the Euclidean distance between the learned and actual system states,and the dashed curves are the distance between the learned and actual parametervalues. These statistics have two noteworthy features. First, the error between thelearned and desired states quickly converges to very small values, regardless of howwell the actual parameters are learned. This result was guaranteed by Theorem 3.1.Second, the �nal error between the learned and desired parameters is much lower whenthe system is trained with input u1. Intuitively this is because input u1 excites morefrequency modes of the system than input u2. Recall that in a nonlinear system thefrequency modes excited by a given input do not depend solely on the input becausethe system can generate frequencies not present in the input. The quality of thelearned parameters can be qualitatively judged by comparing the phase plots usingthe learned and actual parameters for each input, as shown in Figure 3. In Figure 3(a)the system was trained using input u1 and tested with input u2, while in Figure 3(b)the situation was reversed. The solid curves are the system response using the actualparameter values, and the dashed curves are the response for the learned parameters.The Euclidean distance between the target and test trajectories in Figure 3(a) is inthe range (0; 0:64) with a mean distance of 0.21 and a standard deviation of 0.14. Thedistance between the the target and test trajectories in Figure 3(b) is in the range(0; 4:53) with a mean distance of 0.98 and a standard deviation of 1.35. Qualitatively,both sets of learned parameters give an accurate response for non-training inputs.6
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