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Abstract

We consider in this paper the problem of controlling a magient system whose agents move across discrete
locations. The agents attempt to extract resources fromemrgonment in order to maximize their completion of
tasks, while the environment, which may vary as the systesives, distributes its resources according to the agents
requests. The environment is modeled as a network withatiserodes. Our ultimate goal is to design the dynamical
policies that rule the behavior of agents and nodes suchthieatisage of resources in the network is optimized.
In order to solve this problem, we propose a hybrid model tecdbe both agents and nodes. Several components
of this model are design variables that may be obtained tically. We then formulate an equivalent optimization
problem that may be decomposed into two hierarchical optition problems: An integer optimization problem that
considers the distribution of agents among the nodes of eheank, and a convex optimization problem within each
node that corresponds to the distribution of resources ofi eede among its resident agents. We show that the
optimization problem within each node is a special case ®fdhmulation that models congestion control algorithms
in the Internet. We then use the available results to solgectintinuous portion of the proposed hybrid description
for agents and nodes. Moreover, we show that the resultingremus dynamics are globally asymptotically stable,
with their equilibrium point coinciding with the solutiorf the optimization problem. As a consequence, the proposed
continuous dynamics yield an interconnected system thetalsle on each possible configuration of agents and nodes,
i.e., on each possible combination of discrete states inligerid model. This completes the design of the continuous
dynamics of the proposed model, while the design of the éisalynamics is relegated to future work.
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Hybrid Framework for Resource Allocation
among Multiple Agents Moving on Discrete

Environments

I. INTRODUCTION

Advances in computation and communication technologiesige interesting possibilities for substituting com-
plex and expensive single devices, with more cost-effeatistributed systems of multiple simple devices. The
advantage of these distributed systems, better known as-ageaint systems, is that they can perform complicated
tasks by generating a group behavior through the coordinafithe agent’s actions, usually using only local policies
and information that is available through limited commuaiicn and sensing. This results in greater efficiency and
robustness of the system, compared to that of a single devaeever, the control of multiple entities with common
goals raises new challenges which include but are not ldnideghe design of local policies that enable a stable (and
maybe optimal) group behavior, the reliable informatioarsig under communication constraints, and consensus
among agents with potentially different measurements.

There exists extensive literature on multi-agent systearging by application and objective. One major thrust
of the research on cooperative control is that of safe graypgation. Different approaches have been proposed
to address this problem. They include, but are not limitedotonation control [10], [22], [24], [28], [40], [43],
flocking and swarming algorithms [12], [15], [20], [38], [B%&nd platooning [18], [37]. Another frequently discussed
problem is that of positioning agents on a given environm@esults in this direction include facility location via
distributed optimization [9], perimeter tracking [6], foations using implicit functions [5], and coordination ngi
Internet-like protocols [34]. Researchers have also stlidieneral consensus problems [23], [26], [27], [32], [33],
sensor network applications [13], [25], and distributesktassignment using load balancing schemes [11].

The problem we address in this paper is the following: We idarsa set of heterogeneous agents whose goal is to
optimize a utility function via the utilization of resourcavailable in the environment. The environment is composed
of discrete locations connected by paths used by the agetdsate resources at such locations. Different locations
may have different types and amounts of available resouares each location (a node) allocates its resources
according to requests from its resident agents. The agentsest resources according to their particular tasks,
which are encoded on their utility functions. The resour@esallowed to vary in discrete form and according to
environment related events. The agents are therefore leapabwo types of decisions: Requesting more (or less)
of a resource from a location they already occupy, and mofromg one location to another in order to obtain better

resources. The ultimate goal of the cooperative system @ptimnize the aggregate of the agent’s utility functions
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using only local policies i.e., control decisions at thergdevel, such that the usage of the environment resources
is globally optimized by the multi-agent system.

The original motivation for the problem described abovesiated to the design of future communication networks
[29]. The communications related problem is due to the néadsmarter Internet [7] in order to deal with challenges
that communication networks are facing due to their sizdasxpn. An architecture that addresses this problem
abstracts the functions of the network from the physicalvoet [16]. This is done using software agents that
implement the different functions of the network (routii@\S resolution, storage, etc.) and viewing the hardware
nodes as resource providers to be used by the agents for thpleton of their tasks. The agents are then
allowed to move autonomously among the nodes of the netwokearch of nodes that increase the efficiency
and effectiveness of their task completion. A more detailes@ussion of the optimization problem related to the
communication network design is found in [29].

The problem we address in this paper has an important differérom prior literature on multi-agent control
systems [5], [6], [9]—-[13], [15], [18], [20], [22]-[28], [2]-[34], [37]-[40], [43]. We consider agents moving among
discrete locations while the cited results consider agaatang in a continuous space or with continuous dynamics.
We therefore model the environment as a graph where the negessent the discrete locations and the edges
represent the paths that the agents use to obtain informabout other nodes and to move between locations.
Moreover, in order to capture the complete behavior of thiisrconnected system, we model the agents and nodes as
hybrid systems. The general hybrid model we use allows uaftuce both the continuous evolution of the resource
allocation tasks (node and agent dynamics), and the désexeints related to the changes on resource availability
in the locations (node dynamics) and the movement of agentsng the locations in the environment (agent
dynamics). Since the final goal is to optimize the usage ofnibigvork resources, we formulate an optimization
problem, which turns out to be a mixed integer nonlinear mjzation problem. We then obtain an equivalent
hierarchical optimization problem composed of a (globa&fjwork integer optimization problem at the higher level
of the hierarchy, and several decentralized (one for eacte o the network) convex optimization problems.
We then observe that the convex optimization problem wittéith node is a special case of the optimization
problem used to model various Internet congestion contgarithms [17], [19], [36]. This allows us to perform
several simplifications in the design of the agents and ndgieamics. First, the continuous dynamics are designed
separately from the discrete dynamics. Moreover, the paootis dynamics for both the agents and nodes are
designed based on the dynamic model for the Internet cangesbontrol algorithms [1], [19], [36], [41]. This
implies that there is a globally asymptotically stable @@mmous) equilibrium point for each possible (discrete)
agent distribution in the network, and that these equdilmoincide with the solution of the optimization problem
for that particular distribution. It is important to noteaththe results in this paper provide a complete design for
the continuous dynamics of agents and nodes, but leave bpettesign of the discrete transition rules. In Section
VIl we discuss our ongoing and future research work relatethis issue.

The optimization problem formulated in this paper may bevelusing model-based techniques, such as

combinatorial optimization [8], or mixed integer progratnm[14] approaches. These techniques, however, present a
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major problem in terms of computational complexity, sinteytareN P-complete in the number of integer variables
([35] Chapter 18) which in our case may become very largaeftswe propose a hierarchical approach exploiting
the structure of the problem, which allows us to decentealiee continuous decision variables, leaving only the
discrete ones for centralized optimization. Moreover if)][&e proposed the use of randomized algorithms for the
centralized optimization in order to avoid the computadiiocomplexity issues of model-based techniques. While
this hierarchical solution is similar in spirit to the duadé@mposition approach proposed in [42], the discrete
component of our problem makes it different from that hadddy dual decomposition [42]. In fact, the dual
decomposition approach which only considers continuoassie variables.

The rest of the paper is organized as follows: Section Il gmesour working assumptions, the general hybrid
model for agents and nodes and the multi-agent system olgedesign. Section Il outlines the hierarchical
optimization approach that solves the problem stated, evBiéction IV presents the solution for the convex
optimization problem within each node. Section V presehésdesign of the continuous dynamics of agents and
nodes, Section VI shows a simulation example of the desigoetion of the model, and Section VII summarizes

our results.

1. HYBRID MODEL AND DESIGN OBJECTIVE

A. Preliminary concepts

Let G = (V, &) be agraph with nodesindexed byV = {1,2,..., N,,} andedgesf = {(v,w) : v,w € V,v #
w, and v connected to w}. We call the graplundirectedif (v, w) € £ wheneverw,v) € £. A graph isconnected
if there is a path between any pair of nodes in the graph, wherath from v to w is a sequence of different
nodes starting at and ending atv such that consecutive nodes are connected. We call neighbdofv to the
setN, ={weV: (v,w) € &}.

Let a Controlled Hybrid Dynamical System (CHDR} be a tupleH = [Q, 2, G#,Z4,S, GY, Z°] where:

o () is the set of discrete states.

o X = {X,}4e0 is the collection of dynamical systems with, = (X,,R", f,,U,), whereX, is the continuous

state spaceR™ is the time set/f, is the continuous dynamics, ag, is the set of continuous controls .
e S= {S;‘}qu U{S¢ }4eq is the set of discrete transition labels! € ng‘ determines the next discrete mode
for an autonomous transition, anfl € ch determines the next mode for a controlled transition.

o G4 ={G#} e, WhereGy : 5 — X, is a guard condition for an autonomous jump for each Q.

o GY ={G{}scq, whereGS : S¢ — X, is a guard condition for a controlled jump for eagke Q.

o Z4 ={Z}}jecq whereZ : GI x S — {X,},cq is the autonomous transition map.

o Z° ={Z{}4eq, wherezS : G x S — {X,},eq is the controlled transition map.
Finally, H = (quQ Xq) x @ is the hybrid state space &1. Note thatS may include the no transition element
{id}.

The difference between autonomous transitions and céedrtdansitions is that the autonomous transitistts

take place as soon as the continuous state reaches an aotmdransition guard: i.e., the transitions are
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forced, while controlled transitions only take place if artsition eventS® occurs while the continuous state is in
a controlled transition guar@“. This means that even if the continuous state is in a cortidiansition guard

the transition will not take place until an event enabling thansition occurs.

B. System'’s description

Consider the following scenario. A set of agents is movingaanenvironment composed of discrete locations.
Each location (node) has different types and amounts ofuress that may be allocated to the agents, while the
agents use such resources for the completion of differeskitalrhe agents are greedy entities competing for the
resources in the network, which means that each agent aeimpnaximize its usage of resources considering
only its own benefit. Agents are capable of requesting ressufirom the node that hosts them, as well as migrating
to different nodes in the network seeking resources to cetapheir task. Task satisfaction is measured using a
utility function that provides a real value as a function loé resources that the agent uses.

Each node distributes the resources among the agents & hosprding to the requests of these agents. The
nodes may, however, suffer changes in their resource amothe paths (edges) that connect different locations
are used by the agents to move between nodes and/or to obfaimation about resources in nearby locations,
may change over time. The final objective is to design the sioded agents’ dynamics such that the usage of
resources in the environment (network) is optimized withpezt to the requirements of the agents. A pictorial

representation of the problem is shown in Figure 1. We impbeefollowing assumptions:

O

Fig. 1. Multi-agent system example: Each location in thewvoek distributes its local resources among its residingnegyeThe locations are
abstracted as nodes in a graph (gray ovals), the paths laleaftr movement of agents and communication of states leetvdiferent nodes
are represented by edges in the graph. The agents are r@presdth black circles and the resources they use by gray. Bagents move
between nodes (identified with arrows on top) expectingebettsources at a destination node

Assumption 1 (Network) The network is an undirected gragh= (), £) where the fixed total number of nodes

is N,.

Assumption 2 (Resources)There existN,. types of resources in the network, whéye is fixed. For each node

i € V the set of available amount of resources to be allocated @nbe agents located on nodds denoted by
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R; = {ri1,7i2,.--7,nN, }, Wherer; ; € R is the amount of resource of typeavailable at node. We assume that
forallieVandalljeR=1{1,2,..,N,.}, r,; may vary on time, taking on values from a finite Sett R

according to the dynamics specified in Assumption 4.

Assumption 3 (Agents) There is a fixed number of agent§,, indexed by the setl = {1,2,..., N,}. The state
of each agenk € A consists of an ordered tupleey, 1, zx.2, ..., Tk, N, , gk ), Wherezy, ; € R represents the amount
of resource of typg allocated to agent, and g, € V denotes the location of ageitin the graph. Note that

0<zap; <ocoforall ke AandalljeR.

If Assumption 1 is relaxed, the number of nodes may changetowe and it may be possible to have asymmetric
communication and agent movement capabilities betweeasididAssumption 3 is relaxed, we may allow variations
in the number of agents over time. Note however that Assionfiis strongly related to Assumption 1 because
if 0 € =, thenR; = 0 emulates the disappearance of nedeom the network. The assumption th&t varies over
time may then be used to represent the appearance or disappeaf nodes in the network.

We believe that the existence of a fixed number of (non-negdttiit finite) resources’ types in Assumption 2,
and the description of the agents states in Assumption 3easmnable. Any practical problem that may be modeled
under this framework could potentially generate a largeo$eesources’ types to be allocated, but this set is still
finite. Agent satisfaction depends upon their location ie tietwork and the resources allocated to them, so the
relevant information for the agents is contained in theestiscription introduced in Assumption 3.

We now extend the definition of neighborhoods from graph h¢o consider agents and nodes neighborhoods

in the network as follows:

Definition 1 (Neighborhoods) Let the neighborhood of a nodec V be N; = {w e V: (i,w) € E} | U{k € A:

qr = i} i.e., the neighborhood of a node is composed by the nodesathatonnected to it by an edge in the
network and the agents that are located inside the node (shiwigure 2-top). Let the neighborhood of an agent
ke AbeN,={ae A:q,=aq} J{weV:qg =wor (¢, w) € £}, i.e., the neighborhood of an agents is
composed by the agents that are located in the same nodeoitaseld, and the nodes that are connected through

paths of length one to the node it occupies (shown in Figubettom).

Note that the neighborhoods of agenfs and nodesV; are distinguished by the subindéfor the neighborhood
of a node and: for the neighborhood of an agent. For the remainder of thigpave will use this type of notation
to distinguish nodes from agents where similar conceptdafimed for both. Therefore a subindéxs used to
indicate an agent description while a subindés used to indicate an node description. Similarly a subinges

used to indicate a resource description.

Assumption 4 (Node dynamics)Each nodei € V may be described as a Controlled Hybrid Dynamical System

H; that satisfies the following conditions:
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Neighbors of i

Neighbor of i

Neighbors of  k

...........

Keighbor of Kk

C ¥

Neighbor 0

Neighbor of k
Neighbor of k

Fig. 2. Neighborhoods of nodes (top) and agents (agent®.n€ilghborhood of a nodeincludes the nodes that are neighbors in the usual
graph theoretic sense and the agents that are located inindtle neighborhood of an agehtincludes the agents that are located in the same
node ask is, the nodei = g, where agenk is located, and those agents located at nodes that are pesgbbnode: = g;,.

« There exists one; € Q, for each(R;,c;) € =" x A, wherec; represents the number of agents that occupy
nodei € V. Note thatQ); is guaranteed to be finite.

» The continuous dynamics, ; are to be designed. The restrictions ar&,; = X; for all ¢; € Q; (the
continuous state space is the same for all discrete modes){/a; is a function of the states of the agents
located at node.

« There are no autonomous discrete transitions i%}, = 0, G5\, = 0, ZZ', = 0 for all ¢; € Q;. Therefore, we
drop the notation(-)¢ for the controlled transitions.

« Every controlled transition labed, ; € S, ; is a function that maps the occurrence of an event in the node t
the next discrete mode of the system; : E, — @, for all ¢; € Q;, whereE, is the set of possible node
events.

« E, contains two types of events: 1) Changes in the resouftefor each nodei, and 2) Changes in the

number of agenté € A contained inV; for each node.
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e Gg; =X, forall ¢; € Q, i.e., a discrete transition is always possible regardletsvbat the continuous state
is.

» There are no restrictions for the controlled transition nsaf, ;.

Assumption 5 (Agent dynamics)Each agent: € A can be described as a Controlled Hybrid Dynamical System
H,, that satisfies the following conditions:

« There exists ong; € Q. for eachi € V. Note thatQ;, is guaranteed to be finite.

» The continuous dynamics, ; are to be designed. The restrictions aig, , = X, for all ¢, € Qi (the
continuous state space is the same for all discrete modaed)/a, is a function of the state of the node that
agentk occupies. Note in Assumption 3 that the continuous parteo$thte of the agertty, 1, zx. 2, ..., Tk N,.) €
Xi.

« There are no autonomous discrete transitions i}, = 0, G2}, = 0, ZZ,, = 0 for all ¢ € Q. Therefore,
we drop the notatior{-)¢ for the controlled transitions.

« Every controlled transition labed, , € S, « is a function that maps the occurrence of an event in the aigent
the next discrete mode of the system;, : E, — Q) for all ¢, € Qi, whereE, is the set of possible agent
events.

« E, is a set of logic valued functions (unspecified at this morbeoause of being part of the design parameters).
If the output ofe, € E, is true, then an event is generated, otherwise no event isrgtsd.

o Gy = X for all g € Qy, i.e., a discrete transition is always possible regardlessvbat the continuous
state is.

« There are no restrictions for the controlled transition nsaf, .

Assumptions 4 and 5 describe the dynamic behavior of thesadd the agents. We believe they are as general
as possible, since they are based on the general descriftigtorid systems [4]. Theynamics of a nodbehave as
follows: Given an initial hybrid condition - a discrete and@ntinuous stateif, x;) - the continuous state evolves
according to the current continuous dynamics in foreg ;) until the occurrence of a discrete event, caused by
a change in the resources of the ndéleor by the arrival (departure) of an agent to (from) the nodas Bvent
causes the system to change to a new discrete gtatehere the evolution of the system continues according to
the new continuous dynamics, ;.

Thedynamics of an agerdehave in a similar fashion to those of a node, with the falhgucaveats: The discrete
states in the hybrid model of the agent represent the nodé®inetwork that may host the agent. Similarly, the
discrete transitions represent the migration of an agetwdsn two nodes. Thus the agent eveBts which are
discrete valued functions, must be designed to allow thatagechoose the best node in the network as a function
of its requirements. Finally note that tirgeractions between nodes and agelmdppen at both the continuous and
discrete levels: 1) The continuous input of the nodes dyoamie functions of the continuous states of the agents,
andvice-versa 2) The discrete dynamics of the nodes are influenced by thements of agents between nodes,

while the discrete dynamics of the agents are influenced &atailability of resources in the nodes.
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Fig. 3. Example of the dynamical behavior of agents and no#igents are modeled as hybrid systems, which can be repeglsas hybrid
automata. Each mode in an automaton corresponds to a go&sibkion of an agent in the network (Agents on top). Eachsttion between
modes represents a change of location made by an agent @géetbottom). The dynamics of the nodes are also modelegtaii lsystems.
Each mode represents a number of agents residing at a naed paih the availability of resources that varies in disermanner. The agents
on top are located on a node, and therefore have a fixed disstae, while the continuous dynamics of agents and thesnibdé hosts them

are interacting. The agent at the bottom is moving betweeles)oso a discrete transition is happening.
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C. Design objective

The objective is to design the nodes and agents dynamicaltieqs such that the usage of the resources in
the environment (network) is optimized with respect to thquirements of the agents. In order to express these

requirements in a more formal way we assume:

Assumption 6 (Utility functions) Each agent has an expression of its utility functidn, (z) : RV~ — R where

rk = (Th1, Tk 1, -, TN, )L . The utility function is of the form:

N,
U(zr) =Y unj(e,;) 1)
j=1

whereuy, ;(zx,;) : R — R is assumed to be a strictly concave, non-decreasing, arfrelitiable function ofcy, ;

for all k € A and all j € R. Moreover, we assume thay, ;(zx ;) — —oo asxzy; — 0

Note that this assumption is not very restrictive; the léa&irmation that each agent should have is its own
utility function. Moreover, it is reasonable to assume ttiet more resources an agent obtains, the more benefit
it achieves (strictly increasing utility function). Thermmmavity and differentiability assumptions allow us to appl
convex optimization techniques [3], [31] without restirct the problem solution (it is only necessary to look for
the appropriate function that fits these constraints), aed¢quirement thaiy, ;(zx ;) — —oo aszy,; — 0 allows
us to avoid the possibility of any agent getting zero resesird@ herefore, the design objective can be stated as:

Problem 1: Design the node and agent dynamics for all the component®dfitbrid multiagent system described
in Assumptions 1-6, such that it is asymptotically stabléhwequilibrium state(qy, zx) for all £ € A, and the

equilibrium maximizes the aggregate utility of all the atgeim the network as given bEszal Uy (zk).

Ill. EQUIVALENT HIERARCHICAL OPTIMIZATION PROBLEM

In order to gain insight into the design problem we first amalyan optimization problem that is based on
the network objective (maximization OEfCV:‘Il Ui(zx)) and the constraints imposed by the system dynamics
(Assumptions 1-6). Note that to formulate an optimizationhpem, we must consider a fixed configuration of

the network as in the following result:

Lemma 1 Given a fixed configuration of the netwogk (Fixed number of nodes, number of agents, amount of
resources), the equilibrium statey, ) for all & € A that maximize§:f:’:°‘1 Ui (xy) in Problem 1, is the solution,

under the same configuration, to the following optimizatwoblem:

Na
max Uk(xg) 2
1

(T1,-,%k, TN, ),
k=
(q15-1Gk -1 qNgG)
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subject to

xk; >0, forall (k,j)e AXR (3a)
qr € V, for all k& S A (3b)
S g <riy, forall (i) VxR (30)

{k:qx=i}
Proof: (2) follows from Problem 1. (3a) and (3b) are implied by Assumption 3. Finally (3c) dals from
Assumption 2. [ ]

The optimization problem in Lemma 1 is a mixed integer-nogdir programming problem, and as a consequence
NP-complete in the number of the discrete states ( [35] Cha8grwhich in our case is given by the expression
Ny = NNa that grows exponentially with the number of nodes in the netwTherefore, the numerical solution
of this problem becomes computationally intractable asnilmber of nodes in the network increases. We are not,
however, interested in solving this problem directly. &@t, we would like to use the formulation in Lemma 1 to
help us identify the desired characteristics of the dynamicthe nodes and the agents.

First, note that the resources of a node are allocated anfen@gdents located in that node (Assumption 2),
which means that the agents only have access to the resaidrtesnodes that hosts them, as implied by (3c). We
show that this observation allows us to convert the mixeelget-nonlinear optimization problem into a hierarchical
problem, with two subproblems: A convex optimization perhlwithin each node in the network, and an integer
optimization problem on the global behavior of the network.

Let V; be the set of agents located at nadée. V; = {k € A: v, =i}.

Lemma 2 Given a fixed possible distribution of agents= (g1, ..Gx, ..qn, ), the solution of(2)-(3) is given by

the solution for each, j) € V x R of the concave optimization problem:

max Z Upe, i (Tr 5) (4)

a,B,...,yEV; - {revi}

subject to
x>0, foral keV; (5a)
Z Tk, < Tij (5b)
{keV;}
Proof: Assigning a fixed valué € V to eachg;, allows us to discard equation (3b), rewrite equation (2) as

Z max Z Ug(zy)

. (1()4;1,@;---,17): )
{ieVh L g =iqp=i,..,q,=i 1F:ax=i}

because agents at nodenly have access to resources of nad&quations (3a) and (3c) are also rewritten as a

set of equations indexed By that are independent of the choiceqf, obtaining for each € V:

max . Z Uy ()

(TasTgsees
B, yeV; (FEVi}
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subject to
xp,; >0, forall (k,j)eVixR

Z Ty <1y, foraljeR
{keVi}

but the objective equation can be rewritten using (1) (amidde&ring sums) as:

Ny
max Z( Z ukyj(a:kyj)> (7)

(1aa1[37~~~7m'y): )
s = ey

Sinceuy, ;(xk ;) is a strictly concave function ofy, ; for each(k, j) € A x R, the terms inside the parentheses of
equation (7), and the complete utility function are all carefunctions of their arguments. Similarly the constraint
equations above are also concave in their arguments. Thete dllows us to conside¥, independent concave
optimization problems within each node (one for each resuproving the claim. ]

Let D = {D = (qi, .-G, --Gn, ) : D € VNa}, be the set of all possible distributions of agents in thevoek.

Theorem 1 The optimization probleni?)-(3), is equivalent to the following hierarchical optimizatignoblem:

U, (D
by & VP ®
(i,J)EVXR
where for each(i,j) € V x R:
U,;(D) = o, max > tn(@ng) (9)
e nev” nev)
subject to
xr; >0, forallkeVi:(i,j) eVxR (10a)
> aky <rig, sto(i,j) EVXR (10b)

{keV;}

Proof: Equations (9)-(10) are identical to (4)-(5). Then by Lemm#&32-(10) are solution for the optimization
problem (2)-(3) if the distribution of agents is considefeadd. Therefore to obtain an equivalent description to
problem (2)-(3), the agent location has to be added as aideciariable to the problem in Lemma 2. Note that
because the agents are constrained to use resources fromodbethey occupy, the total benefit in the network

fo:ﬂl Ui (zk) is identical to the sum of the benefit that each node in the oré\generates through the agents it

hosts i.e. N
Z Uk(xk) = Z Z Un,j(xm,j)
k=1 (3,7)EVXR {kEV;:}

If both sides of this equations are maximized with respeat &md then with respect t9 we obtain the equivalence

between (2) and (8)-(9). ]
The solution of the problem in Theorem 1, then takes on thieviahg conceptual form (as depicted in Figure

4): A centralized algorithm generates a set of possibleaibigions of agents in the network, and communicates

this information to the nodes in the network, who solve thevea optimization problem (9)-(10) for each one of
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these possible configurations. As a result, they obtain afsbenefit values, one for each possible configuration,
that are communicated back to the centralized algorithnthvkelects the configuration that yields the optimum
performance for the complete network. While, this type déison provides insight to the potential behavior of the
final design of the system as shown in section V, it is howewelegirable and may even be unfeasible because of

its centralized nature (a feasible solution using a cem&rdirandomized algorithm is discussed in [29]).

Distribute U Add and

agents W compare

Fig. 4. Conceptual view of the hierarchical solution: A catited algorithm distributes the agents (Left). The naties allocate the resources
to the agents they host, compute the benefit, and send it batle tcentralized algorithm that obtains the aggregatefibénerder to compare

the possible distributions (Right).

IV. SOLUTION FOR THECONCAVE OPTIMIZATION PROBLEM WITHIN EACH NODE

Consider the optimization problem in Lemma 2 (or equivdienthe problem (9)-(10) in Theorem 1). For
simplicity, we drop the notation that indicates the node gy of resourcéi, j) € V x R. Thus we consider the

problem of maximizing:

U= Z uk(:vk), (11)
k=1
subject to
x>0, forall ke {1,2,..,n,} (12a)
Z:z:k <r (12b)
k=1

wheren, (in general different fromV,) is the number of agents participating in this particulatimzation task.
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Lemma 3 Let A\, € R for all p € {1,2,...,n, 4+ 1}. The necessary and sufficient conditions fot, z3, ..., z}, )
to be the maximal solution of the problem (inl)-(12) are:

duy,

— 4+ Aat1 — Ay =0 Ype{l,2,..,n,} (13a)
dx)
Apxp =0 Ype{l,2,..,nq} (13b)
Ang+1 ( (k) — r) =0 (13c)
k=1
—x, <0 Vpe{l,2,..,n.} (13d)
D (wk) =7 <0 (13e)
k=1
Ap <0 Vpe{l,2,..,n,+1} (13f)

Proof: Letg, = —u, forall p € {1,2,...,n.}, andg,,+1 = >_.=, (z}) — r which are the constraints (12) of

the problem. Then, and using Lagrange multipliers, the Klaiihun-Tucker conditions for optimality [31] become

Ng+1

S—Z+ 2&2—2:0 Vp e {1,2,....,n.}
Apgp =0 Vpe{l,2,....,n, + 1}
gp <0 Vpe{1,2,...n,+ 1}
Ap <0 Vpe{l,2,...,na+1}
Evaluating the derivatives we obta@% = ‘i—? forallp € {1,2,...,n4},

8gj7 0 ]#p
R Y

forall j,p € {1,2,...,n4}, anda‘g‘—ggp+1 =1 forall p € {1,2,...,n,}. Substituting these derivatives back into the

previous equations we obtain equation (13). Since both tifigy dunction (11) and the constraints (12) are strictly

concave, equation (13) becomes a necessary and sufficiedtion for the optimality of(x7, z3, ..., 7}, ). ]

Lemma 4 The solution(z}, 3, .., z;, , AT, A3, ... Ay, 1) of equation(13) is given by\; = 0 for p € {1,2,..., 1.}

9 fngo

and by
d
W x=0 Wpe{l1,2,...n.} (14a)
dx)
D (@k)—r=0 (14b)
k=1
xp >0 Vpe{l,2,..,n.} (14c)
A<0 (14d)
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for (x7,23,.., 2, , Ay, 1) whereA =Xy ;.

Proof: Consider equation (13e), and note that singe> 0 for all p € {1,2,...,n,} and thatu,(x,) is
a strictly increasing function of, for all p € {1,2,...,n,}, any choice of(z1, z2, ..., z,,) for (13e) such that
Sore, (zk)—r < 0 will be suboptimal. Thus equation (13e) must be modified ds , (z,) —r = 0. This conclusion
automatically discards equation (13c) because it is thweatisfied. Equation (13b) provides two choices for each
p: Ap = 0 or z, = 0. The second choice however yieldg(z,) = —oo, violating the maximization of the utility
functionl{. Thus\, =0 for all p € {1, 2, ..., n,}. The same argument leads to the modification of equation)(13d
to —z, < 0 for all p € {1,2,...,n.}. As a consequence of these observations (13a) and (13f)irapifed.
Conditions (13) are then modified to obtain (14). [ ]

Applying Lemmas 3 and 4 to equations (4) and (5), the mainlreduhis section is stated as:

Theorem 2 Given the available resource ; of typej € R in the nodei € V, the utility function(4) is maximized

by(:vj;_’j,xf,_’j, -, @3 5), Wherea, 3, ...y € V; subject to(5) if and only if for each(i, j) € VxR, (x;_’j,x;_’j, ey @ )
satisfies:
d’u,,l€ j %
htadai¥} +A,=0 VEeV; (15a)
dZC,{yj T, j =T}, ; ’
D (@i —riy =0 (15b)
kEV;
r, ;>0 Ve eV, (15¢)
<0 (15d)

] —

V. DESIGN OF THECONTINUOUS DYNAMICS OF AGENTS AND NODES

Based on the results of Section Il we now provide a precisemjation for the continuous dynamics for both
agents and nodes. We start by recognizing that the hiecalc$tructure proposed in Theorem 1 allows us to design
the continuous dynamics independently from the discreteahics. We say that an optimization problégmis

solved exacthpy a systenH, if H has a unique asymptotically stable equilibrium pdiptthat solvesp.

Proposition 1 In order to exactly solve the optimization problem stated @mma 2 using the hybrid model for

nodes and agents given in Assumptions 4 and 5, only the conisndynamics in such models need to be considered.

Proof: Without loss of generality, consider a fixed amount of resesiavailable on each node. This assumption
is not restrictive because allowing variations in the reses according to Assumptions 2 and 4 does not change
the logical arguments of the proof and only causes the siztheofdiscrete state space to increase by a factor
identical to the size of the sé&. Therefore, in order to simplify notation we restrict olves to the case where
the resources remain fixed. From Assumption 4 note that tisesediscrete statg; in node’s hybrid model for
each possible number of agents residing in nadgo for any given choice of discrete states, ..., g, ..., qn, ) €

Q1 X...xQk X ... xQn, inthe agent’s model, there is a discrete state..., qi, ...,qn,) € Q1 X ... X Q; X ... X QN,
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in each node’s model that remains invariant as long as theeadésstates of the agents remain fixed. Then the hybrid
states of both nodds, = (¢;,z,:), Vi € V and agentdy, = (qx, z4.x), Yk € V have fixed discrete dynamics if the
distribution of agentsD remains fixed, which is true by assumption in Lemma 2. Thisli@sgthat the continuous
dynamics of the nodeX; and the agent&y interact without switching between discrete states as landhe
distribution remains fixed. This implies that the optimiaatwithin each node must be solved by the corresponding
continuous dynamics. [ ]

The reader may note that the optimization problem in Lemnwa&dpecial case of a resource allocation problem
considered in the literature, namely the dynamic modelingpagestion control algorithms on the Internet [1], [17],
[19], [36], [41]. As a consequence, we use such results imlésign of the continuous dynamics of agents and nodes
in our problem, enabling a coordination algorithm that sshthe optimization problem of interest. Specifically,
following the treatment in [19], the optimization problemliemma 2 is a special case of equation (1 in [19]) when
L has only one link. Therefore it is possible to apply the rissinl [1], [17], [19], [36], [41] to solve our problem.

According to [19] there are three types of dynamical systeapsable of solving the optimization problem in
Lemma 2: A primal algorithm, a dual algorithm, and a primabktalgorithm. We choose the primal-dual approach
for our problem because it is better suited for the hybrid el®ih Assumptions 4 and 5. It is important to note that
the primal and the dual approaches may also be used. A disouskthese alternatives can be found in Section
VII.

We now provide a description for a dynamical system thateokxactly the optimization problem in Lemma 2.
This description is based on the primal-dual algorithm tmyed in [1], [41], and generalized in [19], [36]. Note
that the state of the agents ; is similar to the state of the routes in [19], and the resources ; are the analog
of the link capacityc; in [19]. We now letp; ; be the continuous state of the node V' and resourcg € R,
which is the analog to the prigg in [19]. We note that the primal-dual description in [19]fdif slightly from
that in [36]. The following result uses the description if6][.3

Lemma 5 Given a fixed distribution of agents € D, the optimization problem in Lemma 2 is solved exactly for

each(i,j) € V x R, by the following dynamical system:

oy = Kaj(®ag)(uy j(Ta;) — pij) (16a)

ipj = Kpj(xs;)(up;(2s,5) — pij) (16b)

g = Ky (g 5) (6 (2.5) — Pij) (16¢)
: +

Pij = [Lij (i) Wi —7ij)], (16d)

wherea, 8, ...,v € Vi, z, = (T.1, T2, .-, T N,.) IS the continuous state of agente V; C A, p; = (pi1,Pi2s - PiN,.)
is the continuous state of nodes V, y; ; = >_, .y 7xj, Ky j(74,;) IS @any nondecreasing, continuous function

with K, j(z.;) > 0 for z,,; > 0 for all k € Vi, L; j(p;,;) iS a positive, nondecreasing continuous function,
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g, i(Ta,j) = dusi(z,.;) is the derivative of the utility function of agentand resourcej with respect to its

dm,iyj

argument, and the notation

max(g(t),0), t=0.

Proof: From Proposition 1 we know that the problem in Lemma 2 is sblvging only continuous dynamics
in agents and nodes. Then, given a gairj) € V x R we note that the optimization problem (4)-(5) is a special
case of the problem (2.1)-(2.2) in [36] (or equivalently {{1]19]). So following the discussion on the Primal-Dual
Algorithm in [19], [36] it is clear that the optimization plotem in Lemma 2 is exactly solved by (16). ]

Based on the previous result we can establish a detailed Ifimdthe continuous dynamics of the nodes and
the agents. This dynamic description is guaranteed to shv@ptimization problem in Lemma 2, or equivalently
the problem (9)-(10) in Theorem 1. Therefore the continudwisamics of this interconnected system will solve
the optimization of the network resourckeally leaving the global optimization to the discrete dynamicghef

hybrid models.

Proposition 2 For eachq; € Q; and all i € V the the continuous dynamical system has the following ggm:

1) The continuous state spacg, ; = P where P = {(p1, p2, ...,pn,) € RV},

2) The continuous dynamics are given in a diagonal matrix:

(fin O ... 0
0 fgiz2
fq,i = . q
0
L 0 0 fq-,i,Nr_

where

Baid = Jaig = [LaiiPais) (D w) =raig)], o VieER,
HeEUq i

where L, ; ;(pq,i,;) IS @ positive, nondecreasing continuous function.

3) The set of continuous inputs,; = U;cg Uq,i,; WhereUyi,; = {2qxj : 5 € Vi}.

Proof: Assumption 2 states that the number of types of resourcdseimétworkN,. is constant for all nodes
¢ € V, and Lemma 5 implies there exists one state dimension fon &gm of resource in the network, then
Xq: C RN+ Since there are no limitations fox,; we makeX, ; = RY» for all ¢; € Q; and alli € V in item 1).

For item 2) note that (16d) describes the dynamics of oneuresdbeing allocated inside each node. Therefore
in order to completely describe th€, resources available in each node one must consifledecoupled resource
dynamics proving the claim.

Finally for item 3), the continuous control inputs for eaabdr: € V described byy; ; in (16d) are the states of

all the agents located in that node i€z, : < € V;}, which implies the third item for alf; € Q; and alli € V. ®
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Proposition 3 For eachgq; € Q) the the continuous dynamical system has the following ge&u:
1) The continuous state spacg, , = X where X = {z = (21,72, ...,2n,) € RV j21 > 0,20 > 0,..., 2N, >

0}.

2) The continuous dynamics are given in a diagonal matrix:

fa k1 0 0
0 fok2
fq,k = !
0
0 0  forN,

where
Eq kg = fakg = Kok i(@oks) (g r;(Taks) = takj), VieER,

where K .. j(z4,5,;) IS any nondecreasing, continuous function Wi . ;(z. ;) > 0 for z, . ; > 0 for all

. dug.b.s
G =i andug . (2gk;) = TE (Tgh,)-

3) The set of continuous input§, » = U cr Uqk,; WhereUy ., ; is the singleton{p,; ;; k € Vi} i.e., pgr; =

Pq,i,j for k € V.

Proof: Follows from similar arguments to the proof of Propositian 2 ]

We now prove that each possible distribution of agents foant®ntinuous dynamical system that is globally
asymptotically stable with an equilibrium point that savexactly the optimization problem in Lemma 2. This
result is an extension of Lemma 5, but is important for ourbpgm, because it guarantees that whatever the
location of the agents in the nodes is, the system will aghtbe local optimum solution for that particular choice
of location. Therefore, each particular combination ofcth$e states of nodes and agefys, ..., ¢, ...,qn,) €
Q1 X ... X Qi X ...xQn,,and(q1,...,qk, -, qn,) € Q1 X ... X Qr X ... X Qn,, (Which we call interconnection)
will have a globally asymptotically stable point. The stat#l only be perturbed from that equilibrium when a
discrete event occurs on the agents or on the nodes, butwtdheatically go towards the equilibrium point of the

new interconnection, and locally optimizes the resours#riution for this new interconnection.

Theorem 3 A selection of discrete states of the agefis, ..., gk, ..., qn,) € @1 X ... X Qk X ... X Qn,, and of
discrete states of the nodésg,, ..., ¢, ....,qn,) € @1 X ... X Q; X ... X Qn,, generatesV, x N, interconnected

systems indexed hy, j) € V x R, where each of them is governed by the following continugusuhics:

Tga,j = qua-,j(xq-,a-,j)(ulq,a,j(xq-,a,j) —Pq-,iyj) (17a)
4,65 = Kq,0,(24,6,5) (Ugp,j(%4,6,5) — Pa,irj) (17b)
Bgy,j = Kq-,'y-,j(xq-,'y-,j)(u;,y,j(xqmj) - pq-,i-,j) (17c)
+
Pa,ij = {Lq,i,j(pq,i,j)(( D wgmg) - Tq,i,j)} (17d)
KEV; Pa,ii
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wherea, 3, ...,y € V.

Moreover, each interconnected system (indexediby) € V x R) is globally asymptotically stable with an
equilibrium point that satisfies the conditions in Theorerne2, solves exactly the optimization problem in Lemma
2.

Proof: Given a selection of discrete stat@g, ..., gk, .-, qn,) € Q1 X ... X Qk X ... x Qn, made by the
agents, the nodes, which have information about the resaawailability, automatically jump to a discrete set of
modes(q1, .., qi, .-, qn,) € Q1 X ... X Q; X ... X Qn,. The agents selectiofys, ..., gk, --., gn, ) imply that each
one of these agenis € A has located itself in a node identified hy. This implies that each nodec V indexes
an interconnected system composed of itself and the set eftadocated on ik € A :€ V;} obtaining N,
interconnected systems. However, since the the dynamidsoth agents and nodes are decoupled in the resources
(second item in Propositions 2 and 3) we can consider thersyas formed by, x N, interconnected systems,
indexed by(i,j) € V x R. Then from Propositions 2 and 3 the interconnected syster) is governed by the
dynamics composed by, ; ; and fq a.j, f4.8,5: - fa,v.5 O o, B, ...,y € V;, which is written as (17). Since this
equation is identical to (16), except for the notation sireg the dependence on the discrete mode, Lemma 5
implies that equations (17) are globally asymptoticalbst, and that they exactly solve the optimization problem

in Lemma 2. [ |

VI. A SIMULATION EXAMPLE
A. Experiment set-up

In this section we provide a simulation example to clarifg toncepts developed in the paper. We are interested
in testing the validity of Theorem 3 and its relationship ke tsolution of the optimization problem (9)-(10) as
given in Theorem 2.

We consider a set of ten agent¥,( = 10) and a graph composed of three nodag (= 3). We assume for
simplicity that the graph is completely connected and thete is only one type of resource available in the network

(V- = 1). The utility functions of the agents, in reference to Asgption 6, have the form:
Uk(xk) = Wk ln(:vk) (18)

for all k € A = {1,..,10}, where we have dropped the dependence on the resource iadasinfplicity. The
utility function (18) satisfies Assumption 6 as long ag > 0. Note thatwy;k = 1,---,10 are weighting
factors for each agent, and are used to quantify the impoetémat the resource has for each agent (the greater
the value ofw; the more important is the resource for agéit In our example, we arbitrarily choose;, as:

(w1, w3, ...,w1p) = (0.5,0.6,0.1,0.3,0.4,0.9,0.4,0.3,0.2,0.1). Note that the particular choice of utility function
for this test is commonly referred to as proportional fagm@l], [17], [19], [36], [41].
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The dynamics of nodes and agents following Propositions®23rare described by:
fai = [Laipai) (Y wqn) =raa)], , VieV={1,2,3}, (19a)
{k:qr=i}

w
Fak = Kqi(@q6) (= = Pai=a.): k€ A (19b)

q,k
where L, ;(pg,:) = tanh(pg;) + 1, Vg € Q; Vi € V, and Ky y(xq.1) = 50x4.1 Vg € Qi VEk € A, satisfying the

conditions in Propositions 2 and 3.

The interconnected system is tested over the time intéfvat [0,9] sec. The agents start & = 0 located
as: (¢1,92,---,q10) = (1,3,2,3,2,1,1,1,3,2) with the continuous initial conditiofx;(0),22(0), ..., 210(0)) =
(2,1,3,2.2,2,1,4.5,8,2,2). The nodes start with the resource amoumts 2, 73) = (2,4, 3) and the continuous
initial conditions(p1(0),p2(0), p3(0)) = (2, 3,2). During the simulation, two events are generated to teftreifit
conditions on the interconnected system:tAt 3 agent7 changes its location frony; = 1 to ¢; = 2, creating the
new configurationqi, gz, .-, q10) = (1,3,2,3,2,1,2,1,3,2), and att = 6 the resource at nod&is changed from
rg = 310 r3 = 2, so the new resource vector becon(es 2, r3) = (2,4, 2). Note from this simulation conditions
that agents and nodes only visit a subset of the discrete srindieeir model: Agents, 2, ..., 6, 8,9, 10 only visit the
mode that corresponds to their location in the graph, whimschot change during the test, while agestarts at
MODE : g; = 1and att = 3 changestd/ ODE : g = 2. Nodel which initially hosts agent starts the simulation
at MODE : ¢ = (4 agents,r = 2) and att = 3 switches toM ODE : ¢, = (3 agents,r = 2). Node2, which
is the final destination of agefit starts the simulation 8 ODE : ¢g» = (3 agents,r = 4) and att = 3 switches
to MODE : q; = (4 agents,r = 4). Finally node3 starts the simulation a/ ODE : g3 = (3 agents,r = 3)
and att = 6 switches toM ODE : ¢35 = (3 agents,r = 2). These changes of modes have a direct effect on the
continuous dynamics. A mode switch on an agent causes tmepigr—,, to change in (19b) (because the rest of
the term are identical for all modes int his model). A switah @ node causes, ; to change in (19a) is because
of a change in the resource while caus(@{k:qk:i} x4,5) 1o change in (19a) if the switch is caused by a change

in the number of agents residing in the node.

B. Results

Given the initial conditions for the continuous states, ld@tions of the agents in the network, and the resources
available at each node as explained in the previous subgetttie state of the system is expected to converge to an
asymptotically stable equilibrium point that coincidegiwihe solution of the optimization problem (9)-(10) with
our particular choice of utility function (18). In order tdtin such equilibrium point we apply Theorem 2 to (18),

obtaining, for eachi € V:

{rEVi} K
1

M= > we VkeV (20b)
¢ {keVi}
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Substituting the values fow;, and r; given in previous subsection, and considering the thresiplesdiscrete
configurations, one for each interval between the beginwmihghe simulation, the events, and the end of the

simulation, we obtain the optimal solutions shown in Table |

Time Interval tel t€0,3) t €[3,6) t€[6,9]
Agent Location (q1,92,---,q10) (1,3,2,3,2,1,1,1,3,2) (1,3,2,3,2,1,2,1,3,2) (1,3,2,3,2,1,2,1,3,2)
Resource Availability (r1,72,73) (2,4,3) (2,4,3) (2,4,2)
Optimal Solution (x],...,x) (0.47,1.63,0.66,0.81,2.66) | (0.58,1.63,0.40,0.81,1.60) | (0.58,1.09,0.40,0.54,1.60)
(2§, x70) (0.85,0.38,0.28,0.54,0.66) | (1.05,1.60,0.35,0.54,0.40) | (1.05,1.60,0.35,0.36,0.40)

TABLE |
OPTIMAL SOLUTION TO THE OPTIMIZATION PROBLEM(9)-(10)WITH UTILITY FUNCTION GIVEN BY (18) FOR EACH CONFIGURATION THAT

THE INTERCONNECTED SYSTEM VISITS DURING THE SIMULATION

Time evolution and Equilibra of X, Time evolution and Equilibra of X,

1.8

1.6

1.4

1.2

0.8

0.6 * *

0.4

0.2
0
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0

t[s] t[s]

Fig. 5.
of the states. The segmented (green) vertical lines irelite occurrence of events that change the operating comslitf the system and are

Dynamic behavior and optimal stable equilibria otrig 1 (left) and 2 (right). The solid (blue) curves show tlyaainic behavior

summarized in Table I. The dotted (blue) horizontal linethwimarks at the extreme points indicate the optimal solutmthé corresponding
optimization problem for the system configuration duringtttime interval, which is found in Table | and is expected tincide with the

equilibrium point where the dynamics approach during suntérval.

The results are summarized in Figures 5- 10. The plots inrBg&-9, show the time evolution of the continuous
states of the 10 agents (in order) involved in the test. Thtcak segmented lines indicate the time of occurrence of
the events that were mentioned in the previous subsectios horizontal dotted lines witk-marks at the extreme
points indicate the expected equilibrium points duringdach interval between events given by the solution of the

optimization problem (9)-(10) with utility function (18Wwhich are shown in Table I. As seen from Figures 5-9,

May 14, 2007 DRAFT



22

Time evolution and Equilibra of X Time evolution and Equilibra of X,
3 25
25 2
2
1.5
x 1.5 <
1
1 * * *
* *N——— %
0.5 ]
05 * *
0 0
0 2 4 6 8 0 2 4 6 8

t[s] t[s]

Fig. 6. Dynamic behavior and optimal stable equilibria oérig 3 (left) and 4 (right). The solid (blue) curves show tlyaainic behavior
of the states. The segmented (green) vertical lines iralita occurrence of events that change the operating comslitf the system and are
summarized in Table I. The dotted (blue) horizontal linethwimarks at the extreme points indicate the optimal solutmthé corresponding
optimization problem for the system configuration duringtttime interval, which is found in Table | and is expected tincide with the

equilibrium point where the dynamics approach during suntérval.

Time evolution and Equilibra of X Time evolution and Equilibra of X

* L
35

25

15

0.5

0 2 4 6 8
t[s] t[s]

Fig. 7. Dynamic behavior and optimal stable equilibria oémig 5 (left) and 6 (right). The solid (blue) curves show tlyaainic behavior
of the states. The segmented (green) vertical lines irelita occurrence of events that change the operating comslitf the system and are
summarized in Table I. The dotted (blue) horizontal linethwimarks at the extreme points indicate the optimal solutmthé corresponding
optimization problem for the system configuration duringttkime interval, which is found in Table | and is expected tincide with the

equilibrium point where the dynamics approach during suntérval.
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Time evolution and Equilibra of X Time evolution and Equilibra of Xg
45 8
4 7
35 6
3
5
25
> x 4
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Fig. 8. Dynamic behavior and optimal stable equilibria oérig 7 (left) and 8 (right). The solid (blue) curves show tlyaainic behavior
of the states. The segmented (green) vertical lines iralita occurrence of events that change the operating comslitf the system and are
summarized in Table I. The dotted (blue) horizontal linethwimarks at the extreme points indicate the optimal solutmthé corresponding
optimization problem for the system configuration duringtttime interval, which is found in Table | and is expected tincide with the

equilibrium point where the dynamics approach during suntérval.

Time evolution and Equilibra of X Time evolution and Equilibra of X0
2 2
15 1 15
x 1 x 1

t[s] t[s]

Fig. 9. Dynamic behavior and optimal stable equilibria oérig 9 (left) and 10 (right). The solid (blue) curves show diygamic behavior
of the states. The segmented (green) vertical lines irelita occurrence of events that change the operating comslitf the system and are
summarized in Table I. The dotted (blue) horizontal linethwimarks at the extreme points indicate the optimal solutmthé corresponding
optimization problem for the system configuration duringttkime interval, which is found in Table | and is expected tincide with the

equilibrium point where the dynamics approach during suntérval.
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Time evolution of Py Py and Py
35 T T T

25 b

Fig. 10. Dynamic behavior of nodes 1 (dotted blue curve)egfsented green curve), and 3 (solid red curve). The segthémteen) vertical
lines indicate the occurrence of events that change theatipgrconditions of the system and are summarized in Table I.

the states of all the agents converge to a stable equilibpioimt on each interval between events. This equilibria
coincides with the optimal solution given in Table I.

To see the effects of the events on agents, observe for egahmbehavior of agents 1 (Figure 5 left), 6 (Figure
7 right), 7 (Figure 8 left), and 8 (Figure 8 right), which ¢tére simulation at node 1. The states of these agents
converge to an equilibrium point that coincides with thategi in Table | column 1 before = 3. Then att = 3
agent 7 switches from node 1 to node 2. This releases somarcesofrom node 1, and such resources may be
allocated to the remaining agents in the node (1, 6, 8). Asnaemuence, the stafe, z¢, zs) is no longer at an
optimal configuration, and thus becomes unstable. The nefigtoation, however, has a new optimal stable point,
given in Table | column 2, which is reached by agents statexs, x5) after a transient period before= 6.

A similar behavior is observed in the time evolution of thates of agents 3 (Figure 6 left), 5 (Figure 7 left),
and 10 (Figure 9 right), which start the simulation at nodéf2er having converged (before= 3) to the optimal
stable equilibrium point given in Table | column 1, agent Tives to node 2 at = 3. This generates a new
system composed by the dynamics of node 2, and agents 3, B¢ 10athat after a transient period (befaore: 6)
converge to the new equilibrium point given in Table | coluthrThe effect of the movement of agentan also
be observed in the state of the nodes in Figure 10. Both stditeedes 1 and 2 reach a stable equilibrium point
beforet = 3, then the event changes the operating point of the systemsdats 1 and 2 which is seen in the new

transient period towards a new stable equilibrium.
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Note that the event that moves ag&rftom node 1 to 2 does not affect the dynamics of node 3 (FigOjeahd
of the agents residing on it i.e., agents 2 (Figure 5 right)f-igure 6 right), and 9 (Figure 9 left).

The second event that changes the amount of resources aBffiae r; = 3 to 3 = 2 only affects the dynamics
of the interconnected system at node 3 formed by the nodeiardics (Figure 10) and agents 2 (Figure 5 right),
4 (Figure 6 right), and 9 (Figure 9 left). In these figures,ahde observed that the agents and the node converge
(beforet = 6) to an equilibrium point given in Table | column 2, and afteetevent at = 6 they switch their
dynamics to approach a new equilibrium point given in Tabt®lumn 3.

To summarize, we observe as expected from Theorem 3, thhtdifierent configuration of agents locations
and amounts of resources, with dynamics given in Proposit® and 3 have a stable equilibrium point which
coincides with the solution to its corresponding optimi@atproblem. We have also observed that agent-related
events affect the dynamic behavior and optimal solutionhef $¢ystems at both the origin and destination nodes,
while node-related events only affect the condition at theal node. This happens in part because we have not
included discrete transition rules in the agent’s and rodgbrid models. We expect this to change when the design

is complete.

VII. CONCLUSION AND FUTURE WORK

The problem studied in this paper considers agents moving oetwork of discrete locations. The agents need
resources in order to perform some tasks, and such resaanegsovided by the environment. The agents’ objective
is to obtain the best possible resources from the networkdieroto maximize their satisfaction measured using
a utility function. The objective of the multi-agent systehowever, is to achieve a group behavior such that the
utilization of the network resources is globally optimized

The overall behavior of the system includes resource dilmcamovement of agents between discrete locations,
and a change of network conditions. Therefore, both agemisredes need to be described using continuous
(resource allocation) and discrete dynamics (agents mereand varying network conditions) that can be captured
by a hybrid model [4], [21]. The hybrid model we propose isamplete, and this paper outlines how to obtain the
continuous dynamics only, leaving the discrete dynamicgpaaified.

The continuous dynamics are designed using results botréween Internet congestion control algorithms [1],
[17], [19], [36], [41]. This is done by obtaining an optimtian problem that is equivalent to the multi-agent system
overall objective, and then using the results in [19], [36pbtain a precise dynamical description of the continuous
dynamics of nodes and agents. This model forms an intercbehsystem for each possible configuration of agents
and nodes that is globally asymptotically stable by desigl that optimizes the usage of resources locally within
each node.

The discrete dynamics are a key factor to achieving glob&ihipation of resource utilization in the network.
The design of this part of the model is expected to take onrabaealytical steps. The first step which is already
being pursued is to apply an abstraction procedure [2], {8Qhe continuous dynamics of the system, in order

to obtain a simplified, but still meaningful description dietdynamic behavior of the interconnected system. To
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obtain this abstract description note that since each Iplessonfiguration of the system generates a stable system,
S0 it can be substituted by its unique stable equilibriunmpgiven by the solution of the optimization problem
(9)-(10) in Theorem 2. This may be done using a similar pracedo that discussed in [30]. Then, with a discrete
description of the interconnected system available, weseixfp be able to design simple discrete transition rules

that achieve a global optimization of the utilization ofgasces in the network, or to obtain a suboptimal solution.
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