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Abst rac t  

In this paper we consider the Finite-Time Stability and 
Finite-time Boundedness problems for linear systems 
subject to exogenous disturbances. The main results of 
the paper are some necessary and sufficient conditions, 
obtained by means of an approach based on operator 
theory; such conditions improve some recent results on 
this topic. An example is provided to illustrate the 
proposed technique. 

1 In t roduct ion  

When dealing with the stability of a system, a distinc- 
tion should be made between classical Lyupunoz) Stabil- 
i t y  and Fznite-Tz7ne Stability (FTS) (or short-time sta- 
bility). The concept of Lyapunov Asymptotic Stability 
is largely known to the control community; conversely 
a system is said to be finite-time stable if, once we fix 
a time-interval, its state does not exceed some bounds 
during this time-interval. Often asymptotic stability is 
enough for practical applications, but there are some 
cases where large values of the state are not accept- 
able, for instance in the presence of saturations. In 
these cases, we need to check that these unacceptable 
values are not attained by the state; for these purposes 
FTS can be used. 

Most of the results in the literature are focused on Lya- 
punov Stability. Some early results on FTS can be 
found in [6], IS] and [5]. More recently the concept of 
FTS has been revisited taking advantage of the Linear 
Matrix Inequalities (LMIs) theory; this has allowed to 
find less conservative (but still only sufficient) condi- 
tions guaranteeing FTS of linear continuous-time sys- 
tems (see [Z], [I]). 

Another concept which is strongly related to that one of 
FTS is Finite-Time Boundedness (FTB), which takes 
into account possible norm bounded I22 disturbances 
affecting the system. Roughly speaking, a system is 
said to be FTB if its state does not exceed a prespecified 
bound for all admissible disturbances. 
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The main goal of this paper is to provide necessary and 
suficient conditions for FTS and FTB of linear sys- 
tems; such conditions improve the recent results pro- 
vided in [Z], where, as said, only sufficient conditions 
were given. Contrarily to most of the previous liter- 
ature on the subject, which makes use of approaches 
based on Lyapunov functions, the methodology pro- 
posed in this paper is based on operator theory. 

The paper is organized as follows: in Section 2 the def- 
inition of FTS and FTB is recalled and some prelimi- 
nary results are stated; in Section 3 necessary and suf- 
ficient conditions for FTS and FTB are given together 
with an illustrative example; finally some conclusions 
are drawn in Section 4. 

2 Nota t ion ,  P rob lem Statement and 
Pre l iminary  Results 

We denote by PCA the space of the uniformly 
bounded, piecewise continuously differentiable, real 
matrix-valued functions defined on R := (0,TJ. C R 
and by I2; the space of the real vector-valued functions 
which are square integrable on R. 

The Euclidean vector norm and the corresponding in- 
duced matrix norm are denoted by 1.1; I/ ' 1 1  denotes the 
usud norm in Ci. 

Given S : il ct RnX", we write S > 0 (2 0) meaning 
that S i s  positive definite (semidefinite), i.e. that there 
exists (Y > 0 such that for all U E W" and for all t E R 

V T S ( t ) V  2 alwlZ ( V T S ( t ) U  2 0) 

Given two matrix-valued functions of the same dimen- 
sions S and 2, the notation S > 2 ( S  2 2) means that 
S - Z > O(> 0). Finally the symbols S < (S)O, and 
S < (<)Z have obvious meaning. 

Now consider the linear system 

i: = A x + G w ,  ~ ( 0 )  = Z O ,  t E O  (1) 

where A E WnX", G E WnX" and w E C;. We give the 
following definitions. 
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Definition 1 (Finite-Time Stability) The linear 
system (1) with G = 0 is said to be F i d e  Time Stable 
with respect to (Cl, 6,  y) if 

Lemma 1 Let us consider system (1) and a number 
p > 1; then the following statements are equivalent: 

/ z o l 5 6 * I z ( t ) l < y  V t E R .  il Ip-11 < io f o r  t E]o,T]; 

0 ii) There eicists a symmetric P E PCA such that 

Remark  1 (Finite-Time Stability and Asymp- 
totic Stability) It  is worth noting that Asymptotic 

P ( t )  +ATP@)  + P ( t ) A  
+@-*P(t)GG*P(t) < 0,  t E R 

P(T) 2 1 
Stability and FTS are independent concepts: a system 
which is FTS may not be asymptotically stable, while a 
asymptotically stable system may not be FTS. 0 P(0)  < p21 

Definition 2 (Finite-Time Boundedness) The Proof: See the appendix 
linear system (1) with xo = 0 is  said to be Finite-Time 
Bounded (FTB)  with respect to (Cl,d, y) if 

llwll 5 d * lz(t)l C y tlt E R .  
3 Main  Resul ts  

0 
3.1 Necessary and Sufficient Conditions for 
FTS and FTB Finally we consider the case in which the inital state is 

non-zero and a C2 input affects the system. 
Theorem 1 Svstem (1) {with G = 0 )  i s  FTS with E -  

sped to (a, 6 ,  y) iff there exists a symmetric P E PCA 
Definition 3 (Finite-Time Boundedness with such 
Non-Zero Initial S ta te )  The linear sostern (1) is  . .  
said to be Finite Time Bounded with non-zero initial 
state (FTBNZ) with respect to  (n, 6 ,  d ,  y) if for all xo 
with 1x0) 6 6 the following holds 

\\U\\ S d * la(t)l < y W E R .  

0 

In the sequel we shall state necessary and sufficient 
conditions for FTS and FTB and sufficient conditions 
for FTBNZ. 

Note t,liat, for a given time instant t E ] O , T ] ,  the linear 
system (1) uniquely defines the linear operator 

r t  : an a ~ t , ~ ,  a" : ( X o , w ( . ) )  ++ &) .  ( 2 )  

Given z E B" and w E L&,, we equip the space B" fB 
C'fo,ti with the norm 

ll(Gw)ll := dLFiFP. (3) 

P ( t )  + ATP( t )  + P ( t ) A  < 0 t E Cl (4a) 

P(T)  2 1 (4b) 

Proof: 
tor (2) reduces to 

First of all note that in this case the opera- 

Tt : a" H R", xo - z ( t )  t E ] O , T ] .  

By virtue of Lemma 1, to prove the statement we have 
to show that FTS of system (1) is equivalent to  the fact 
that Jlrt/) < 2 for all t €10, T) .  

First we prove the sufficiency. Let t E ] O , T ]  and absume 
that I]rtll < i; then we have 

lX(t ) l  < 1 I\rt/I := sup ~ 

z,ErU"-{O) IXOI 6 

which in turn guarantees that for all z0 E R" - {O} 
We denote by l\rtII the norm of the operator Tt induced 
by (3); it is defined as follows i z ( t ) i r  

/ b o /  < T .  
iirtii := SUP M t ) '  ., t E]O,T].  

This last inequality implies that for all xo with /XO/ 5 6. (z0,..)#(O.0) Il(.O> w)Il 

Iz(t)/ is bounded from above by y; FTS of system (I) 
follows from the arbitrariness of t .  In what follows the next lemma will be useful. 
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Conversely, let us a.ssume that system (1) is FTS. Then, 
since the operator rt is linear, we have (see 141) 

lW llrtll := sup - 
r o € W ~ - [ O )  IZOI 

Example  1 Let us consider the system 

( 5 )  

For this system we exploit the result stated in The- 
orem 1 in order ta evaluate the maximum attainable 
nonn  of the state at the time instant T = 1, starting 
fmm an initial u n i t a y  nonn condition fllx(0)ll = b = 
1). For a given value of?, in order to find numerically 
a matrix function P(.)  solving (4), we split the interval 
[0,1] into a number of parts, and approximate the solu- 
tion by a linear behaviour in each sub-interval (by im- 
posing continuity at the extrema of each sub-interval). 
If a solzltion is  not found, we mfine the splitting of the 
interval (0, I], until the length of the sub-intervals re- 
sults to be less than a pre-specified value. ' 

I n  this way we are able to estimate the lower bound of y 
for which system ( 5 )  is  FTS  with respect to (IO, l ] , l , y ) .  
This estimate of y evaluated to yeat = 2.72. 

For this simple example we can evaluate exactly the 
lower bound of y b y  computing explicitly 

y := sup z (T )  = 2.712. - 
l l = o l l = ~  

Note that Y~~~ and y are v e y  close. This is  not surpris- 
ing since the condition stated in Theorem 1 is necessary 
and suficient, and so it does not introduce any conser- 
vativeness. On the other hand by applying the sufficient 
condition given in 121 we got the following estimate for 
Y 

yoid = 5.30. 

We have reported in Figure 1 the time behaviour of the 
eigenvalues of the solution P(t)  of (4) with y = 2.72. 
0 

By following the same guidelines of Theorem 1 we can 
prove the following necessary and sufficient condition 
for FTB. 

Figure 1: Eigenvalues of the solution P(t )  

Theorem 2 System (1) (with 20 = 0 )  i s  F T B  with 
respect to (R, d ,  y) iff there exists a symmetric P E Pc& 
such that 

P ( t )  + A T P ( t )  + P ( t ) A  

+(y /d ) - 'P ( t )GGTP( t )  < 0 ,  t E R (6a) 

3.2 A Sufficient Condi t ion for FTBNZ 
The following theorem provides a sufficient condition 
for FTBNZ. 

Theorem 3 System (1) i s  FTBNZ with respect to 
(n ,6,d,y)  if there ezists a symmetric P E PC; such 
that 

P(t)  + A T P ( t )  + P ( t ) A  
+y-'(6' + d2)P(t)GGTP(t) < 0 t E R (7a) 

P(T) 2 I (7b) 

P ( 0 )  < - Y2 I (7c) 
J2 + d2 

Proof: 
of the theorem we have to  show that l/rtll < 
all t €10, TI implies the FTBNZ of system (1). 

Let t E]O,T]; by assumption we have 

By virtue of Lemma 1, to prove the statement 
for 

which guarantees that for all (ZO, w )  # (0,O) 
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This last inequality implies that for all zo with (zo( 5 6 
and for all w such that (1wII 5 d ,  ix(t)l is bounded from 
above by y. FTBNZ of system (1) follows from the 
arbitrariness oft .  w 

4 Conclusions 

In this note necessary and sufficient conditions for Fi- 
nite Time Stability and Boundedness of linear systems 
have been provided; such conditions improve the re- 
sults of [2].and [l]. An illustrative example shows the 
effectiveness of the proposed methodology. 

It is worth noting that, for the sake of presentation 
simplicity, we have considered time invariant, certain 
systems, but there is no conceptual difficulty in extend- 
ing the results contained in this paper to time varying 
and/or uncertain systems following the guidelines of 
PI and PI. 

Appendix 

In order to prove Lemma 1 we need the following pre- 
liminary lemma. 

Lemma 2 Let us consider system (1) and a number 
p > 1; then the following statements are equivalent: 

Z) Ilrtl\ < P for all t E]O,T]; 

i i )  There exists a symmetric P E PC; and a scalar 
E > 0 such that 

P(t)  + A T P ( t )  + P ( t ) A  
+p- 'P(t)GGTP(t)  + €1 = 0 ,  t E R (Sa) 

P(T)  2 I (9b) 
P(0) < PZI (9c) 

Proof: Let t €10, TI 

i) s ti) Let us augment system (1) with the fictitious 
output g as follows 

X Az +Gw,z(O) = 10 (loa) 

g = p a : .  (10b) 

Define the operator 

F* : Rn 63 Lf0,$, H R" : (zo, .U(.)) H i ( t ) .  (11) 

By using continuity arguments it is clear that Condi- 
tion i) implies that there exists a sufficiently small e 
such that 

llftll < P ,  (12) 

Inequality (12) enables us to apply Theorem 1.2 of [7] 
to the fictitious system (10) which guarantees the exis- 
tence of a symmetric P E PCf0,,, such that 

P(T)  + A T P ( ~ )  + P(T)A  

+P-'P(,)GGTP(~) + E I  = 0 ,  r E [O,t] (13a) 

P ( t )  2 I (13b) 
P(0) < 021 (134 

Letting t = T in (13) and t + T the proof follows 

i i )  + i )  The solution P( . )  of equation (9a) with ter- 
minal condition P(T) = S 2 I can be given the follow- 
ing interpretation. Let us consider the optimal control 
maximization problem (see 13)) 

s.t. X = Ax + Gw . (14) 

Then the optimal value of the cost index is 

J(x(t), t )  = zT(t)P(t)z( t )  ; (15) 

moreover P(.) is non-increasing, in the sense that for 
tz > t l  

Wl) 2 P ( t 2 ) .  (16) 
Therefore we have 

By considering the restriction of P(.)  to the interval 
[O, t], t t R,  we can conclude that there exists a sym- 
metric P E PCto,tl such that (13) holds. 

The proof follows by using continuity arguments and 
w applying Theorem 1.2 of 171. 

At this point, Lemma 1 follows from Lemma 2 by notic- 
ing that c > 0. 
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