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Nonlinear Stability Analysis for Non-polynomial Systems 

S. Mastellone 5, P.F. Hokayem t ,  C.T. Abdallah , and Peter Dora td  

Absfract-In this paper the stability analysis of nonlinear 
systems is studied through different approaches. The main idea 
of the paper is to map the original class of noulinear systems 
into a smaller subclass of systems described by multivariate 
polynomial functions, for which the study of stability is 
available. 

I. INTRODUCTION 

The objective of this work is to propose tools to study 
the stability of a large class of nonlinear systems using 
Lyapunov methods. From Lyapunov stability theory [8], we 
know that the stability of an autonomous system i ( t )  = 
f ( x ) , x  E R” can be investigated by checking the sign 
definiteness of the function P = f (x) where V ( x )  2 0 
is a Lyapunov function candidate. For the class of systems 
where f ( x )  is a multivariate polynomial in the components 
of x, there are several available tools for stability analysis 
and design. Such tools include Quantifier eliminations (QE) 
[ 5 ] ,  [16], Branch and Bound techniques [6], [IO], probabilis- 
tic and statistical learning methods [I], and several positivity 
tests [4]. 

In [19], [20] approximation techniques are used to 
transform a nonlinear system that does not satisfy the 
involutivity conditions required for feedback linearization, 
into a feedback-linearizable system. Our work in contrast 
proposes different approximation techniques, the main ob- 
jective being to transform the system into a polynomial 
form. Although in this work we are only concerned with 
stability analysis, all the techniques proposed can be ex- 
tended to design by considering ContmILyapunovFunction 
(CLF) 171. The main advantage of multivariate polynomial 
approximations for f ( x )  is that, if V ( x )  is selected to be 
a multivariate polynomial function, then f’ is also a mul- 
tivariate polynomial function, and Lyapunov stability tests 
are reduced to the study of sign-definiteness of multivariate 
polynomial functions. 

11. DEFINITIONS AND NOTATION 

We recall some standard definitions, and notations. 
Definition I: Multivariate Monomials. A multivariate 

real monomial of degree m, in n variables in R is a function 
defined as M ( m , n )  : = x : ’ x ~ x ~  ...C., for x =  [ X I , .  . . ,xn] E 
R” and the degree m of a monomial is defined as m = 
deg{M(m,n)} := 2y=lmi. 
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Definition 2: Multivariate Polynomials. A multivariate 
polynomial of degree m in n variables in R is a function 
defined as a fmite sum of multivariate monomials G,,,, := zEl h&(m,n) where N is the number of monomials added 
in G,,-. The degree of the polynomial is defined as m = 
maximi, where mi are the degrees of the monomials. 

Definition 3: PSD Polynomials. We define P,,, as the 
set of positive semi-defmite (PSD) polynomials of degree 
m, with m even number, in n variables, i.e. 

&,, := {p E R[x] ’: p ( x )  2 0, deg{p} = m, Vx E R”} (1 )  

Where R[x], is the set of polynomials with real coefficients 
in the variable x = 1x1,. . .,x,]. 

Definition 4: SOS Polynomials. We define Xn,, as the 
set of sum-of-squares polynomials in n variables, and degree 
y ,  where m is even; i.e. 

m 
2 

I,, := {p(x) =&hi;  deg{p} = m, deg{h} = -; 

We proceed by giving a formal definition of the class of 

Definition 5: Consider the class S of a nonlinear multi- 

P,hk E R[x], x 6 R”} (2) 

functions we will be, dealing with throughout this paper. 

variate function defined as follows 

S = 
, I  

i= 1 
{f : f ( x )  = Cpi(x)gi(x), pi : R” -+ R, monomials 

gi : 0; -4, nonlinear functions,D; c R”, 
(3) 

In particular, the elements of S are sums of polynomial 
functions, non-polynomial functions, and product of both. 

Definition 6: Recall again the class S of multivariate 
functions defined in ( 5 )  as the functions composed by sum 
of terms in which there are polynomial and non-polynomial 
elements. Consider a subset SI c S in which a part of the 
variables only appear in the polynomial functions p(x ) ,  i.e. 

Dz 2 R, 1 E?} 

x g ( j )  = x ( j ) ,  j = k +  1 ,.._, n, k <  n 

where pi are multivariate polynomial functions and g, are 
multivariate non polynomial functions. Observe that the first 
k components of x only appear in the polynomial part and 
form a so-called polynomial vector x p ( i )  = x ( i ) ,  i = 1,. . . , k 
where xp E Rk. We refer to these variables as “polynomial 
variables” and to the remaining variables in the state vector 
as “global variables”, and they form a “global vector” 
x p ( j )  = x ( j ) ,  j = k +  l , . .  . ,n  and xg E R(”-‘), we have 
x = [xp xglT. The meaning of such notation will be made 
clearer next. 
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Definition 7: Consider the class of systems that produce 
a derivative of the quadratic Lyapunov function along the 
trajectory that belongs to the class SI defined in (6), we 
refer to this class of system as "decoupled state systems", 
in which the state vector can be split into two parts, the 
first part of the state vector only contribute to the dynamic 
of the system through polynomial functions, i.e. 

i = P(x)G(x,), x ER", xg E R("-') ( 5 )  
x g ( j ) = x ( j )  j = k + l ,  ..., n, k < n  

Where P and G are respectively a vector polynomial func- 
tion and a vector non-polynomial function. Consider the 
state vector x and split it into two parts x = [t (171'. in which 
E; is the vector of polynomial variables and 'p is the vector 
of global variables as defined in (6), we can then rewrite 
( 5 )  as follows 

<(i) = xi i = l ,  ..., k (7) 
'p(j) = x, j = k + l ,  . . .  n k < n .  (8) 

Next we present conditions for the stability of a nonlinear 
system based on the stability of its polynomial approxima- 
tion. 

111. POLYNOMIAL APPROXIMATIONS 

In this section, we study the local stability of a nonlinear 
system through its approximation with a polynomial system. 
This analysis is valid as long as our system function is 
within an error E from the polynomial approximation. Our 
results, of course, hinge on the fact that we are able to get a 
'good' approximation. Several references on approximation 
with multivariate polynomials can be found in [ll], [12]. 
The main idea of approximating with multivariate polyno- 
mials is to sample (deterministically or probabilistically) 
the original function, the to interpolate the samples using 
polynomials. Since almost all approximation schemes are 
valid in a region, our stability results will naturally be 
local For our purposes, we assume that a polynomial that 
approximates the system function on the region of interest 
is available. 

A. Approximated by Polynomial Functions 
In most Lyapunov tests, we have little knowledge on how 

to verify the sign-definiteness of the resulting complicated 
multivariate functions. Since many tools are however avail- 
able for determining the sign-definiteness of polynomial 
functions, a potential solution to the original problem is to 
consider the approximation of a generic nonlinear function 
by a polynomial, and to study how the local stability of the 
original system may be deduced to the local stability of the 
approximated system. This is the case of the next theorem. 

(9) 

Theorem I :  Consider the nonlinear system 

f = f ( x ) ,  f(0) = 0, x E R" 

where f is a vector function f : 0; 4 4; where DY, Dl C 
R", and h, i = 1,. , , ,n are continuous multivariate func- 
tions, Also consider the polynomial approximation p of 
f, with p : R" R" on the intervals [ai,bi], i = 1 ,..., n, 
with a bound on the approximation enor given by E = 
[E, E* . .. ,~,J',i.e. 

I ~ ( x )  - p i ( ~ ) l  < ~ i , V k  E [ai,bi], i = 1 ,...,PI. (10) 

From now on we will use the notation x E [a, b] ,  meaning 
xi E [ai, bi ] ,  i = 1,. . . ,n, also (AI, will denote the absolute 
value of all the elements of the n x 1 vector A. Assume we 
can find a quadratic Lyapunov function for the polynomial 
system Vp = xTQx where Q = Q' is a positive definite, n x n 
matrix. Then, the original system is stable in [a;,b;], i = 
l , , . . , n  i fandonlyif  

vp= b p ( x )  VP < - ( l~ 'Q / ,~+~ ' lQ~l . ) ,Vx€[a ,b l  ( 1 1 )  
Pro03 We will denote with V/ the Lyapunov function 

of the original system, and with V, that of the approximated 
system. We choose Vf = V, = x'Qx. Then 

vf = x'Qf(x) +fr(x)Qx (12) 
f', = ~ ' Q P ( x )  +P ' (x )Q~  (13) 

Let AV = pf - Tp. Then two cases might arise: 
1) AV > 0: we get 

v/- v p  =xTQ(f(x)  - P ( x ) )  + ( A x )  - ~ ( x ) ) ' Q x  
I IkTQ(f(x) - p b ) )  + Cf(x) - p(x))'Qxl 
5 lx'Ql.(~)+ (&)'lQxl. (14) 

from which we can conclude that a necessary and 
sufficient condition for f'/ to be negative is that 

vp < - ( l X r Q l " E + E ' l Q ~ l ~ ) , V ~ €  [a,b] (15) 

2) Ay < 0: In this case we observe that from the condition 
AV < 0, it follows that vP - > 0 from which 
we guarantee the negativity of Tf directly from the 
negativity of p,, i.e. vp 5 0. Since condition (15) is 
stronger than this last condition, we can summarize 
the result and state that the local stability of the 
original system for x E [a, b] is guaranteed for Vp 5 
-(Ix~QI.E +erIQxln), Vx E [a,bl. 

B. Stabiliry of Perhrrbed Systems 
Using stability results of perturbed systems [8], we can 

state sufficient conditions for a nominally stable system 
to remain stable after it is subjected to a perturbation 
depending on the size of the perturbation. We consider 
the polynomial approximation of the original system as the 
nominal system, and the original system as the perturbed 
system. In particular consider the nonlinear system 

x = f ( t , x ) .  (16) 
Where f : lo,-) x D + R" is piecewise continuous in f and 
locally Lipschitz in x on [0, -) x D, D c R" and x = 0 E D. 
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Also consider the approximation of f ( t , x )  in the interval 
x E [a, b] c D by a polynomial function p ( f , x )  with error 
of approximation e ( t , x )  such that e : [O,-) x [ q b ]  4 R" 
is piecewise continuous in I and locally Lipschitz in x 
on IO,=-) x [a ,b] ,  [a,b] c D c R" and x = 0 E [a ,b] .  Also 
assume we have an upper bound E on the error of approxi- 
mation e ( f , x )  such that If( t ,x)  -p( t ,x)(  = Ie(t,x)l I E. With 
this assumption, we have the nominal and perturbed systems 

t = p( t ,x )  (17) 
x = p ( t , x ) + e ( t , x )  (18) 

Knowing that the polynomial systemp(f,x) has a uniformly 
asymptotically stable equilibrium point at the origin, we 
want to determine the size of approximation for which 
the original system remains stable. We can now apply the 
stability results of perturbed systems. 

Lemma I :  [8] Let x = 0 be an exponentially stable equi- 
librium point of the approximated system (17). Consider a 
Lyapunov function associated with the approximated system 
V,(t ,x),  and assume that it satisfy the following 

i c4 i Ilxll,V(t,x) E [O,-) x [a,bl, (21) 

[a,b] = {x  E R" : IJxJI < r}  

Where cl, c2, c3, c4 are positive constants. Also assume that 
the error of approximation e(t ,x)  satisfies 

C. Krasovskii 's Method 
In studying the stability of nonlinear systems, the only 

unanswered question is usually the choice of a Lyapunov 
function candidate. Krasovskii showed that choosing the 
Lyapunov function candidate as a quadratic form of the 
system function, i.e. V ( x )  = f(x)'Qf(x), Q = QT > 0, 
the asymptotic stability conditions can be reformulated as 
follows. 

Theorem 2: Given the autonomous system 

t = f ( x ) ,  f(0) = 0 (27) 

with f (x) continuously differentiable, a sufficient condition 
stability of the system is that the Jacobian 

satisfies 

or equivalently 

x'Qf(~) +f'(x)Qx 5 -x'x, VX E D  C R" (29) 
If we apply Theorem 2 to the system rewritten in terms of 
its approximated version, we obtain the following stability 
conditions in terms of p(x )  and E 

xTQp(x)+pT(x)Qx< -x'x-(xrQ~+~*Qx)VxE [a,b] 

which is obviously ? positivity condition on a multivariate 
polynomial function. 

IV. S-PROCEDURE APPROACH 

There are several available tools to study the sign definite- 
ness of polynomial functions. Our goal in this section is to 
simplify the structure of non-polynomial functions through 
a transformation that allows us to rewrite the function as 
a multivariate polynomial whose variables are subject to 
some inequality constraints. The positivity of the original 
function can then be investigated, by studying the new set of 
inequalities, of the transformed function and the constraints. 
In [I81 a technique ,to test the polynomial nonnegativity 
over a finite set described by polynomial equalities and 
inequalities is proposed. We propose here &I alternative 
approach. The S-procedure will allow us to obtain sufficient 
conditions for the pdsitivity of the system of inequalities. 
We start by stating the problem of determining the positivity 
of a multivariate nonlinear function over R". 

Problem 1: Consider a multivariate nonlinear function 
composed of sum of an arbitrary number of nonlinear 
functions, f = z:fi,fi : 0; + D2 where 0; 2 R" and 
D2 2 R. Our objective is to determine if f ( x )  is non- 
negative for all x E 0;. 
Next we consider the problem of deciding positivity of 
a multivariate polynomial function, whose variables are 
subject to inequality constraints. 

Pmbiem 2: Consider a multivariate polynomial function 
p : R" -+ R where D is a n-dimensional domain. We aim to 
determine if p(x)  is non-negative for all x E R" subject to 
inequality constraints i.e. p(x )  2 0, Vx E R", x+ <xi  <Xi, i = 
1,. . . , n. 
Next we show how using a special transformation, Problem 
(1) can be reformulated as Problem (2). Then the S- 
procedure [3] can be used to solve problem (2). 
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A .  S-procedure for quadratic functions 

R": 
Let FO , , . , Fk be quadratic functions of the variables z E 

C;(z) = zTTiz+2urz+ vi, i = 0 , .  . . ,k (30) 

where Ti = qr,  'are n x n, ui are n x 1 vectors and vi 
are scalars. Then a sufficient condition for the following 
statement 

Vzsuch that C ; ( z ) > O , i = 4 ,  . . .  k + F o > O  (31) 

is that there exists T I , .  . . , ~k > 0 such that 

Fo>TIfi+'.'+TkrFk . , (32) 

E. Function Transformation 
In order to simplify the structure of the problem we refine 

the class of functions described in Problem (1). Starting 
with the class S defined in Definition 5, we will, through a 
two-step transformation, rewrite a function from the class S 
as a quadratic function. As a first step, we observe that 
a function in class S with n variables and nl 5 I non- 
polynomial elements gj, can be viewed as a polynomial 
function in n+nl variables, where the vector z of variables 
is an extension of the original vector x, if we rewrite the 
non-polynomial functions as new variables defined over the 
range of the function as follows: 

f ( x )  = f ( z )  = x p j ( z ) h j ( z ) , z  E R("+"l) (33) 
i= I 

zi = x i , i = l ,  ..., n 
zj  = gj (x ) ,  zj  E D2 = {kjl , i j i l u k j 2 , ~ j 2 I u . .  .I, 

j = n +  1,. . . ,n+nl  

The second step of the transformation is to rewrite the 
function f, and the variable constraints in a quadratic form 
as follows: 

f ( z )  = 2 ' T z  + 2UTZ + v (34) 

Where T is a ( n + n l )  x ( n + n l )  symmetric matrix, U is a 
( n f n l )  x (1) vector and v is a scalar. Also consider intervals 
defining the domain Dz 

D2 = {g,j 5 zjj 5 i j i ,  , j = n +  1,. . . , n + n l ,  
i = 1,. . .m}. (35) 

Note that the domain 0 2  is composed of all the domains 
of definition of the functions g,, j = n + 1,. . . ,n + nl ,  each 
of those domains may be composed as the union of many 
intervals k,Z,], i = 1,. . . m m is the number of intervals 
for each domain. Consider now the set of intervals in the 
domain D2 expressed as in ( 3 9 ,  in order to express this 
constraint as inequality of quadratic forms as follows. Let 
us focus first on the lower bounds 

4 ( z )  = z . - r . > O , j = n + l ,  I -, - ..., n + n l  (36)  
- 
F j ( z )  = f j - z j Z O .  

We can now express E, and Fj as quadratic forms 

F . ( z )  -I = ~ ' T j l ~ + 2 u ; , ~ - ~ , > 0  (37) 

Fj(Z) =zrl;2z+2U;z-zj 2 0 (38) 

in which ql, c2 are zeros ( n + n l )  x (n+nl)'matrices, uji, 
uj2 are ( n + n l )  x (1) vectors with all the components null 
except those in the j position that are respectively u j l ( j )  = 
3, u . ~ ( j )  J = -+. Applying the S-procedure we obtain that 
a sufficient condition for f ( x )  to be positive under the 
constraints (37) and (38), is that there exist T~ E R, 2 0 
such that f ( z )  gF,(z) > 0. Next we show an example 
on the applicability of this technique. 

Example I :  Consider the nonlinear system 

*'I = -x: +$++ (39) 
4 = x2sin(xl) - 2 x 2  -& (40) 

and the Lyapunov function candidate V(x)  = f(4+.$): We 
want to analyze the stability of the system around the ongin, 
which is an equilibrium point for the system. Since V ( x )  
is quadratic, in order to check the stability we need to test 
that P(x) < 0. Then, 

P(x) = -x;" + X I $  + x : x ~  +x&~in(xl) - 2x: -44 (41) 

We aim to determine whether or not -p 2 0, Vx E R2. First 
we reformulate the problem as a multivariate polynomial 
problem with interval constraints i.e. 

ZI =+; 22 = X z ;  23 = X I X 2 ;  24 =$; 25 = S i f l ( X l )  

we obtain 

f ( z )  = -V (z )  = ~ - Z ~ Z ~ - Z Z ~ Z ~ - Z ~ Z ~ + ~ + Z :  
-1  6 r s ~ l ; r ~ ~ 0 ; ~ 4 ~ 0  

Consider the quadratic form associated with f(z) = zTQz. 
Following the usual procedure we obtain the following 
decomposition for -P(z) 

= 1 o - i o  0 2, f n z 4 = [ ; ]  ZI [;; ;$ ; ;;][a] 
2s - 5  25 

Also consider the quadratic forms associated with the 
constraints 

sin(x1) 2 - 1 + z5 + 1 2 0; sin(xl) 5 1 + 1 - 2s 2 0 (42) 

observe that since 1 - 2 5  and 24 are both nonnegative, 
so is their product (1 -zs)z4. Rewriting the constraints 
in a quadratic form FI(z) and Fl(z) and applying the S- 
procedure with T I  = O, T2 = 1 we obtain 

= x; --XI.: -x:x2 +4 +x;'x: 
1720 



Applying the SOS procedure, which will be explained in 
the next section, we get 

from the positivity of the matrix it follows the positivity of 
f - ~ j f i  and consequently positivity of -9, Vx E Rz, 
and the stability of the system. 

v. GENERALIZED SUM OF SQUARES 
In [14], it was shown how SOS programming can be ap- 

plied to analyze the stability of nonlinear systems described 
by polynomial functions. The tool has also been extended to 
several applications other than stability analysis [17], [15]. 
We aim in this section to extend this approach to systems 
that are not characterized by polynomial functions. The 
main advantage of the proposed approach is the computa- 
tional tractability of the SOS decomposition for multivariate 
polynomials. 

A .  Global nonnegativity 
As stated repeatedly in this paper, many problems in 

nonlinear systems can he reduced to the basic problem of 
checking the global nonnegativity of a function of several 
variables [4]. The problem is to give equivalent conditions 
or procedure for checking the validity of the proposition 

F ( x ,  ,..., x.) 2 0,Vxi ,..., xn E R  (43) 

If we limit our study to polynomial functions, F ( x )  = p(x ) ,  
then a sufficient condition for p(x )  2 0, is that p ( x )  be a sum 
of squares. The general problem of testing global positivity 
can then be reformulated as a condition for the existence of 
SOS decomposition. 

Observe first that a necessary condition for a multivariate 
polynomial function (43) to satisfy global nonnegativity 
is'that the degree of the polynomial be even. In 1900 
(First congress of Mathematicians) Hilbert presented the 
following conjecture, that will be referred as Hilbert 17'* 
problem [9]: Consider p E P,,,,,,, then there exist polynomials 
qi and r; such that 

In other words any PSD polynomial p ( x )  can be expressed 
as a sum of squares of ratios of polynomials. Hilbert proved 
the conjecture for ternary forms ( n  = 3), and Artin proved 
the conjecture for any n in 1927. In [9], a theorem is 
presented, and a step-by-step algorithm is given allowing us 
to obtain the Hilbert decomposition of a polynomial form. 
From Hilbert's conjecture it is proven that any PSD form 
can be written as a sum of squares of ratios of polynomials. 
This is no longer true if instead of a ratio of polynomials we 
limit ourselves to polynomial functions. In general, having 
an SOS form is a sufficient but non-necessary condition for 
PSD. As Hilbert proved however, there are three cases for 

which the two classes (SOS and PSD) are equivalent [14]: 
polynomials in two variables, polynomials of degree two 
and polynomials in'three variables of degree four. 

B. Sum of square decomposition 
First we will show that using semi-definite programming 

(SDP) it is possible,to test if a given polynomial admits an 
SOS decomposition [14]. 

Theorem 3: Given a multivariate polynomial p : x E 
R" + Rz" of degree 2m, a sufficient condition for the 
existence of SOS representation p(x )  = p ( z )  = zTQz is 
Q 2 0 where z is a vector of monomials in x of degree 
m. 
So the test for SOS of a polynomial function has been 
reduced to a linear :matrix inequality (LMI) [3]. Then for 
a symmetric matrixIQ we obtain the following eigenvalue 
factorization [2] Q = LTTL, from which follows the de- 
composition p(x )  = C,(Lz):. In general we have that the 
SOS representation might not be unique, depending on the 
choice of the components of the z vector. In particular, 
different choices of the vector z correspond to different 
matrices Q that satisfy the SOS representation. It could be 
that only some of those matrices are PSD, so the existence 
of SOS decomposition for a polynomial may depend on 
the representation. If at least one of the matrices of the 
linear subspace is positive semidefinite (i.e. the intersection 
of the linear subspace of matrices satisfying the SOS repre- 
sentation with the positive semidefinite matrix cone is non 
empty), then p ( x )  isSOS and therefore PSD. In general we 
will choose the components of z to be linearly independent, 
and we will say that the corresponding representation is 
minimal. 

C. SOS Generalization: A Partial State Vector Appmach 
We will show hbw, under certain assumptions, it is 

possible to apply the SOS procedure to a nonlinear, non- 
polynomial function; The main idea is based on the use of 
SOS procedure, considering the generic nonlinear function 
as a polynomial function, in which the non-polynomial 
parts are treated asl,coefficients of the function. Rewrit- 
ing the function as a quadratic form we get f ( x )  = 
~ ( x ~ ) ~ Q ( x ~ ) z ( x ~ )  where z is a vector of monomial of 
XI,. . . ,Xk E xp, and Q is a matrix of appropriate dimension, 
which depend on the variable q + 1 ,  . . . ,x, E xg trough the 
non-polynomial functions g;. From SOS theory, a sufficient 
condition for f ( x )  >'0 is that Q(xg) to be positive definite. 
In order to apply the SOS procedure to a generic nonlinear 
non-polynomial fundtion, we need to restrict the class of 
system we deal with,'in particular we will consider the class 
of systems defined id (7). The state vector x is divided into 
two parts, cp and 5.  In fact, choosing a quadratic Lyapunov 
function V = xTx ind applying the SOS procedure for 
determining the sign' of -P we want to find conditions on 
'p that guarantee V is decreasing along the trajectory of the 
system for all 5 i.e. 

-P=z(5)qQ(cp)z({) > O  Vc ERk (45) 
1 



Next, we present an example to illustrate these results. 

by a decoupled vector space as described 
Example 2: Consider a nonlinear system characterized 

.t1 = -xlsin(x3) (46) 

I3 = -4x3log(x3) (48) 
I 2  = -x:+xlcos(x3) (47) 

The state vector x = [XI x2 q ] ‘ ,  satisfies the conaition for 
the system to be decoupled state, i.e. ~ 1 ~ x 2  only appear 
in a polynomial fo&. Considering the quadratic Lyapunov 
function V = fx’. sufficient condition for the stability of 
the system is the positivity of the following function 

-P  = 4sin(x3)  +x: - x ~ x 2 c o s ( x ~ )  +x:x:log(x3) > 0, (49) 

Vxl ,xz E R2: The corresponding quadratic form is 
T sin(x3) -fcos(x3) o : I  [ i ]  - P =  [ ] [ -fCOS(X3) 4 /0g(X3) 

0 0 
the expression above result to be positive if all the minors 
of the matrix are positive, i.e. 

1 
4 

sin(x3) > 0; & .+og(x3)sin(xs) - -C0s2(X3) > o 
from which we get the condition’on x3 to guarantee the 
stability of the system. The system is stable in the domain 

D = { X I  E R , ~ 2 E R , ~ 3 > 2 . 7 1 8 3 ,  

2rtK <X3 < r t (2Kf  1) ,K= 0,1,2 ,__. } 
In order to verify the stability of the system in the domain 
D we evaluate - P ( x )  in a set of sampled value taken from 
D and outside of D. More precisely consider the domains 

Ql = { X I  = 100x3,x2 = l ,x,  = [ 0 , 2 ~ ] }  (50) 

Qz = {XI = 1 0 , ~ ~  = - , x 3  = [ 0 , 2 ~ ] }  (51) x3 
100 

Fig. I. Values of -Y in Ql 

In Figure (1) - P ( x )  is plotted for x E Ql, we can notice 
how the function is positive, and then the system is stable 
for values of x3 E (O,Z), and is negative for values Of  x3 E 

The result is however conservative, in fact even for values 
of x3 c( 2.7 the function -P is still positive as we can see 
in the Figure (1). 

(rt,270. 

VI. CONCLUSION 
In this paper, we presented various methods to analyze 

the stability of nonlinear systems. The main idea was to 
reformulate the nonlinear stability problem into a poly- 
nomial setting, and then utilize results pertaining to the 
stability of polynomial systems, or extend existing results. 
We presented a new analysis relating a class of nonlinear 
systems to approximated polynomials systems. Also, we 
utilized the S-procedure in a novel setting, and extended the 
SOS procedure to that end. All these reformulations present 
a new way to analyze nonlinear systems, through analyzing 
their polynomial counterparts. 

REFERENCES 
[I]  V. Koltchinskii, C.T. Abdallah, M. Ariola, P. Dorato, and D. 

Panchenko, “Improved Sample Complexity Estimates for Statistical 
Leaming Control of Uncertain Systems”, IEEE Tranroctions on 
Automatic Conrml, Vol. 45, No. 12, pp. 2383-2388, December 2000. 

[2]  P.J. Antsaklis, A.N. Miehel, “ Linear Systems”, McGraw-Hill, Sin- 
gapore 1997. 

(31 S.Boyd, L. E. Ghaoui, E. Feron, V. Balalrrishnan ” Linear Matrix 
Inequalities in System and Control Theory”, SIAM, Philadelphia 
1994. 

141 N. K. Base Applied multidimentional System theory” Van Nostrand 
Reinhold ElectncaVComputer Science and Engineering Series, NY 
1982. 

[5]  P. Dorato, D. Famularo, C.T. Abdallah and W. Yang ‘‘ Robust Nonlin- 
ear Feedback Design via Quantifier Elimination Theory:’lnt.J.Rohst 
Nonlinear Conlml9, pp. 817-822 April 1999. 

[6] P. Darato ‘‘ Quantified Multivariate Polynomial Inequalities The 
Mathematics of Practical Control Design Problems” IEEE Contml 
Sysfemr Mogarine pp. 48-58 October 2000. 

[7] ASsidori Nonlinear Contml System Third Edition Springer-Verlag, 
London 2001 

[8]  H.K.Khalil ‘* Nonlinear Sysytems” 3d edition, Prentice Hall, Uppel 
Saddle River ,NI 2002. 

[SI E.Klerk, D.Pasechnik Products of positive forms, linear matrix 
inequalities, and Hilbetl 17-th problem for temary forms”. European 
1. of Operational Research, October 2002. 

[ IO]  C.T. Leondes ‘‘ Control end Dynamic Systems” Academic Pres, inc. 
1992. 

[ I  I ]  G.G. Lorentz, ‘’ Approximation of Functions”, HR&W, NY 1966. 
[I21 G.G. Lorentz, ’I Bemstein Polynomials 2”d Ed!’, Chelsea, Nu, 1986. 
[I31 S.Malan, M.Milanese, M.Tmgoa, and I.Garloff, E’ algorithm for 

mbust perfmionce analysis in p m e n c e  of mired prrrametric and 
dynamic perfurbations, in Proc. 31 st IEEE ConfDecision and Con- 
trol, Tucson, AZ, 1992, pp.128-I33 

[I41 P. A. Parrilo. ‘‘ Structural semidefinite programs and remialgebraic 
geometry methods in robustness and optimization.” PhD Thesis, 
Califomia Inslhte  of Technology Pasadena, Califomia May 2000. 

[IS] P. A. Parrilo ‘‘ Exploiting structure in sum of square pmgrams” 
Automatic Contml Laboratory Swiss Federal Institute of Technology 
Ziirich, Switzerland, Submitted to CDC 2003. 

[I61 M. Jintrand ’‘ Constructive Methods for Inequality Constraints in 
Control:’ Linkaping 1998. 

1171 Z. larvis-Wloszek. R. Feeley, W. Tan, K. Sun, A. Packard Some 
Conrals Applications of Sum of Square Programming”. Submitted 
to CDC 2003. 

[I81 P. A. Parrilo ‘‘ An Explicit Construction of Distinguished Repre- 
sentations of Polynomials Nonnegative over finite sa” Automatic 
Control Laboratory Swiss Federal Institute of Technology Ziirich, 
Switzerland. IfA Technical Reoon AUTO2-02. March 2002. 

~~~~~ . 
[ 191 1. Hauser, ‘%dinear control via uniform system approximation” 

[20] J. Hauser, S. Sastry and P. Kokotovic, ‘Wonlinear control by appmn- 
Syst. C o m  Lett., vol. 17, pp. 145-154, 1991. 

imation input- output linearization: The Ball and Beam Example:’ 
IEEE Transactions on Automatic Control, vol. 37, pp. 392-398, 1992. 

1730 


