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Abstract—The critical features of the load balancing problem
are the delayed receipt of information and transferred load.
Load distribution and task processing contend for the same re-
sources on each computational element. This paper documents
experimental results using a previously reported deterministic
dynamic nonlinear system for load balancing in a cluster of
computer nodes used for parallel computations in the presence
of time delays and resource constraints. The model accounts
for the trade-off between using processor resources to process
tasks and the advantage of distributing the load evenly between
the nodes to reduce overall processing time. The control law is
implemented as a distributed closed-loop controller to balance
the load at each node using not only local estimates of the queue
sizes of other nodes, but also estimates of the number of tasks in
transit to each node. Experimental results using a parallel DNA
database show the superiority of using the controller based on
the anticipated work loads to a controller based on local work
loads.

I. INTRODUCTION

Parallel computing, which uses multiple interconnected

computational elements to solve a single problem, can be

applied to large-scale parallel databases. For example, DNA

databases have been growing rapidly in recent years, and are

predicted to increase to an eventual scale of 108 profiles.

Forensic applications require rapid searches on these DNA

databases. The anticipated size and the search requirements

for DNA databases necessitate the development of parallel

DNA databases. New methods developed by Wang and Bird-

well [1][2][3] lead naturally to a parallel decomposition of

the DNA database search problem while providing orders of

magnitude improvements in performance over current soft-

ware. Distributing the load evenly on parallel architectures

is a key activity required for an efficient implementation.

Distribution of computational load across available re-

sources is referred to as the load balancing problem in the
literature. This work uses a generalization of queue length

of tasks to expected waiting time, normalizing to account
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for differences among computational elements (CEs), and

aggregates the behavior of each queue. Previous results by

the authors study the effects of delays in the exchange

of information among CEs and the performance of a load

balancing strategy [4][5][6][7], and provide some historical

background. This paper documents experimental results us-

ing a parallel DNA database that demonstrates the efficacy

of the controller.

Computational loads need to be distributed more or less

evenly over the available CEs to effectively utilize a parallel

computer architecture. The qualifier “more or less” is used

because the communications required to distribute the load

consume both computational resources and network band-

width. It is not difficult to imagine scenarios in which load

distribution occurs so frequently that tasks are shifted around

a parallel architecture without being computed. Our work in

[8] discusses a mathematical model that captures processor

resource constraints in a load balancing system. This open

loop model was shown to be self consistent and (Lyapunov)

stable, and was validated using Simulink simulations and

comparison with simple experiments using time delays to

model database activities. Initial results showing an extension

to closed loop control are presented in [9].

This work addresses closed loop control for a resource-

constrained load balancing problem in the presence of time

delays. While the author’s prior publications document ex-

perimental work using a time delay to emulate a database

search, this paper documents results using implementation

of DNA profile databases containing several million pro-

files. Closed loop control requires knowledge of work loads

throughout the system. A controller on any node has only es-

timates of loads at other nodes due to communication delays
that occur when exchanging queue sizes between nodes and

transfer delays that occur when transferring tasks from one
node to another. The control law based on delayed informa-
tion from other nodes can cause unnecessary data transfers

between nodes (the queue lengths oscillate), and prolong the

completion time [9]. In order to increase efficiency, a control

law has been proposed that uses estimates of anticipated
workloads, which includes not only local estimates of the

queue sizes at the other nodes, but also estimates of the

number of tasks in transit to it [9]. In this manner, each node

has an estimate of the status of both CEs and tasks in transit

to the CEs when making its control decision. Experiments

on a parallel DNA database are presented in this paper that

document both the implementation strategy and the efficacy

of the load balancing strategy using anticipated work loads.

This paper is organized as follows. Section II describes
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a nonlinear time-delay model of a load balancing algorithm

for a computer network that incorporates both time delays

required to communicate between nodes and transfer tasks

and processor resource constraints. Section II-B examines

the feedback control law on a local node and how a sending

node portions out its tasks to other nodes. Section III

documents the implementation of a parallel database and its

load balancing method. Section IV presents experiments on

the parallel DNA database using the closed loop controller

based on anticipated work load. Section V concludes this

work.

II. MATHEMATICAL MODEL

To provide a control system design perspective for the load

balancing problem, consider a computing network consisting

of n computers (nodes) all of which can communicate with
each other. At start up, the computers may be assigned an

equal number of tasks. However, some nodes may operate

faster than others, and when a node executes a particular task

it can in turn generate more tasks, so that very quickly the

loads on various nodes become unequal.

A simple approach to load balancing would be to have

each computer in the network broadcast its queue size q j(t)
to all other computers in the network. A node i receives
this information from node j delayed by a finite amount
of time τi j; that is, it receives q j(t− τi j). Each node i can
then use this information to compute its local estimate of the

average number of tasks in the queues of the n computers
in the network. The simple estimator

(
∑nj=1 q j(t− τi j)

)
/n,

(τii = 0), which is based on the most recent observations, can
be used as the network average. Node i compares its queue
size qi(t) with its estimate of the network average, and only
if this is greater than zero or some positive threshold, the

node sends some of its tasks to the other nodes. Further, the

tasks sent by node i are received by node j with a delay hi j.
The task transfer delay hi j depends on the number of tasks to
be transferred and is much greater than the communication

delay τi j. The controller (load balancing algorithm) decides
how often and fast to do load balancing (transfer tasks among

the nodes) and how many tasks are to be sent to each node.

It has been shown that this straightforward controller leads to

unnecessary task transfers (the queue lengths oscillate) due

to the time delays, and that a modification of this controller

can be used to avoid unnecessary task transfers [9].

The critical features of the load balancing problem are

the delayed receipt of information and transferred load. As

explained, each node controller (load balancing algorithm)

has only delayed values of the queue lengths of the other
nodes, and each transfer of data from one node to another

is received only after a finite time delay. In addition, both

load distribution and task processing require processor time

on each node. An important issue considered here is the

effect of these delays and resource constraints on system

performance. The model used here captures the effect of the

delays in load balancing techniques as well as the processor

constraints so that system theoretic methods can be used for

analysis.

A. Basic Model

The mathematical model of the task load dynamics at a

given computing node for load balancing is given by

dxi(t)
dt

= λi−μi (1−ηi(t))−Um(xi)ηi(t)

+
n

∑
j=1
pi j
tpi
tp j
Um(x j(t−hi j))η j(t−hi j) (1)

where pi j � 0, p j j = 0,∑ni=1 pi j = 1, and

Um(xi) =

{
Um0 > 0 if xi > 0
0 if xi = 0.

In this model,

• n is the number of nodes.
• xi(t) is the expected waiting time experienced by a task
inserted into the queue of the ith node. With qi(t) the
number of tasks in the ith node and tpi the average time
needed to process a task on the ith node, the expected
(average) waiting time is then given by xi(t) = qi(t)tpi .

• λi ≥ 0 is the rate of generation of waiting time on the
ith node caused by the addition of tasks (rate of increase
in xi).

• μi ≥ 0 is the rate of reduction in waiting time caused by
the service of tasks at the ith node and is given by μi ≡
(1× tpi)/tpi = 1 for all i if xi(t) > 0, while if xi(t) = 0
then μi � 0.

• ηi = 0 or 1 is the control input which specifies whether
tasks (waiting time) are processed on a node or tasks

(waiting time) are transferred to other nodes.

• Um0 is the limit on the rate at which data can be
transmitted from one node to another and is basically a

bandwidth constraint.

• pi jUm(x j)η j(t) is the rate at which node j sends waiting
time (tasks) to node i at time t. That is, the transfer from
node j of expected waiting time (

∫ t2
t1 Um(x j)η j(t)dt in

the interval of time [t1, t2]) to the other nodes is carried
out with the ith node being sent the fraction pi j of this
waiting time (i.e., pi j

∫ t2
t1 Um(x j)η j(t)dt).

• The quantity pi jUm(x j(t−hi j))η j(t−hi j) is the rate of
transfer of the expected waiting time (tasks) at time t
from node j to node i where hi j (hii = 0) is the time
delay for the task transfer from node j to node i.

• The factor tpi/tp j converts the waiting time from node
j to waiting time on node i. Note that x j/tp j = q j is the
number of tasks in the node j queue. If these tasks were
transferred to node i, then the waiting time transferred
is q jtpi = x jtpi/tp j .

All rates are in units of the rate of change of expected wait-

ing time, or time/time which is dimensionless. Generalizing
the queue length to an expected waiting time (normalization)

helps to account for differences among CEs. The control

input ηi is introduced to capture the processor constraints.
Node i processes tasks in its queue when ηi = 0. If ηi = 1,
node i can only send tasks to other nodes and cannot initiate
transfers from another node to itself. The quantity pi j is the
fraction of waiting time above the estimate of the network
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average to be transferred from node j to node i with pi j �
0,∑ni=1 pi j = 1 and p j j = 0. One approach is to choose them
as constant and equal, i.e.,

pi j = 1/(n−1) for j �= i and p j j = 0. (2)

Another approach defines pi j based on the estimated state of
the network, and is given in the following subsection.

The model (1) is shown in [8] to be self consistent in

that the queue lengths are always nonnegative and the total

number of tasks in all the queues and the network are

conserved (i.e., load balancing can neither create nor destroy

tasks). The model is only (Lyapunov) stable, and asymptotic

stability must be insured by the choice of the feedback law.

B. Feedback Control

In [8], a feedback law at each node i was based on the
value of xi(t) and the delayed values x j(t−τi j) ( j �= i) from
the other nodes, where τi j (τii = 0) denote the time delays
for communicating the expected waiting time x j from node
j to node i. This controller caused unnecessary task transfers
back and forth between nodes due to delayed information of

queues at other nodes (see [9]). However, there is additional

information that can be made available to the controllers at

every node – specifically, the information on qneti , which is
the number of tasks that are in the network being sent to the

ith node, or equivalently, the waiting time xneti � tpiqneti .
A new control law was proposed by the authors in [9]

that uses not only the local estimate of the work loads qi
on the other nodes, but also the number of tasks qneti in
transit to it. Each node j sends to each node i in the network
information on the number of tasks qneti j it has decided to
send to each of the other nodes. This way the other nodes can

take into account this information (without having to wait

for the actual arrival of the tasks) in making their control

decision. The communication of the number of tasks qneti j
being sent from node j to node i is much faster than the
actual transfer of the tasks. Furthermore, each node i also
broadcasts its total (anticipated) amount of tasks, i.e., qi +
qneti to the other nodes so that they have a more current
estimate of the tasks on each node (rather than have to wait

for the actual transfer of the tasks). The information that

each node has is a more up to date estimate of the state of

network using this scheme.

Define

zi � xi+ xneti = tpi (qi +qneti) (3)

which is the anticipated waiting time at node i. Further,
define

zi avg �

(
n

∑
j=1
z j(t− τi j)

)
/n (4)

to be the ith node’s estimate of the average anticipated
waiting time of all the nodes in the network. This is still

an estimate due to the communication delays. Define

wi(t) � xi(t)− zi avg(t) = xi(t)−
∑nj=1 z j(t− τi j)

n
(5)

to be the expected waiting time relative to the estimate of

average (anticipated) waiting time in the network by the ith

node. By using expected waiting time xi(t) in (5) we avoid
transferring nonexistent tasks in its queue (i.e., tasks in transit

to it) from a node. A control law based on the anticipated

waiting time is chosen as

ηi(t) = h(wi(t)) , (6)

where h(·) is a function given by

h(w) =

{
1 if w� 0

0 if w< 0.

The load transfer portions, i.e., pi j, can be specified using
the anticipated waiting time z j of the other nodes as follows.

pi j =
sat(z j avg− zi(t− τ ji))

∑
i � i �= j

sat(z j avg− zi(t− τ ji))
, (7)

where sat(·) is defined as

sat(x) =

{
x if x� 0

0 if x< 0.

The quantity sat(z j avg− zi(t− τ ji)) is a measure by node j as
to how much node i is below node j’s estimate of the network
average (anticipated) waiting time. Node j then portions out
its tasks among the other nodes according to the amounts

they are below its estimate of the network average waiting

time. It is obvious that pi j � 0,∑ni=1 pi j = 1 and p j j = 0. All
pi j are defined to be zero, and no load is transferred, if the
denominator is zero.

III. PARALLEL DATABASE WITH LOAD BALANCING

A parallel computer has been built as an experimental

facility to evaluate load balancing strategies on parallel

databases. A root node (search server) communicates with

k groups of networked computers. Each of these groups is
composed of n nodes holding identical copies of a portion
of the database. Any pair of groups correspond to differ-

ent databases, which are not necessarily disjoint. In the

experimental facility, all machines run the Linux operating

system. It is anticipated that the implementation will scale

by multiples of eight computers, and the upper limit of this

design appears to be on the order of 108 DNA profiles due

to current memory limitations of the systems and available

network bandwidth.

A. Parallel DNA Database

In the DNA database application, a database search engine

is executed on each node of the parallel machine. The parallel

database is implemented as a set of queues with associated

search engine threads, typically assigned one per node of the

parallel machine. The search engine accesses tree-structured

indices to locate database records that match search requests,

as described in [3]. Due to the structure of the search process,

search requests can be formulated for any target profile and

associated with any node of the index tree. These search

requests are created not only by the database clients; the
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search process itself can also create search requests as the

index tree is descended by any search thread. Search requests

that await processing may be placed in any queue associated

with a search engine containing the same data, and the

contents of these queues may be moved arbitrarily among the

processing nodes of a group to achieve a balance of the load.

Each node also runs a load balancing thread to exchange

queue information with the other nodes and redistribute the

tasks depending on the relative workload.

B. Multi-threaded Search Server

A search server communicates with clients, accepts in-

coming requests, and returns results. Clients do not interact

directly with parallel nodes, and see a single huge database

with rapid search capability. Figure 1 shows a multi-threaded

search server using threads, PVM [10], and object serial-

izations. The multi-threaded search server starts a listening

thread (LThread) which listens for connection requests and
manages a pool of service threads (SThread’s) that service
these connections. Requests are distributed and results are

gathered using a communication thread (CommThread),
which communicates with the search engines via PVM and

serialization. A logging thread (LogThread) records events,
such as connection time and request information, into a

MySQL [11] database for administration. Each search engine

node also maintains a MySQL database for saving and

restoring states.

LThread

SThread

Client

…
)

CommThread

Search
Engine

…

LogThread

P
V
M

Logs

Requests

Results

DB

SThread

Results

Search
Engine

DB

Search
Engine

DB

Fig. 1. Diagram of a multi-threaded search server.

IV. EXPERIMENTAL RESULTS

Experimental results for parallel searches with load bal-

ancing integrated with a parallel DNA database are presented

here. The first set of experiments is conducted to evaluate

the parallel database with integrated load balancing with an

initial task distribution and no arriving tasks. The second set

of experiments shows results with randomly generated task

arrivals in the search engines and compares this to searching

the parallel database with load balancing disabled. The third

experiment shows results with load balancing on a larger

network consisting of six nodes. These experimental results

demonstrate the efficacy of the load balancing strategy using

anticipated waiting times on a parallel DNA database.

A. Queues of Initial Tasks

In this experiment, the performance of load balancing for

a 3-node group with an initial unbalanced condition and no

new arrivals is evaluated. Each of the nodes (labeled node1,
node2, and node3) runs a search engine with an identical
DNA database. The initial conditions used for the task queues

(q1,q2,q3) are (0,0,200). On each node, a load balancing
thread broadcasts its queue size (when the queue’s size

changes) to the other nodes in the network, and also receives

information on their queues’ sizes. After loading the initial

200 search requests (tasks), node3 calculates its estimate of
network average load as q3 avg = (200+ 0+ 0)/3≈67, and
its workload relative to the network average as q3 di f f =
200− 67 = 133. Next, node3 calculates the portions of
search requests (tasks) to be transferred according to (7), and

broadcasts the number of search requests to be transferred

to each of the other nodes, which include the (anticipated)

number of tasks being sent to node1 and node2 (66 each).
Figure 2 shows the local workloads, average estimates and

tracking differences computed by node3. Node1 receives
the values broadcast from node3, and updates its estimate
of average (anticipated) workload to q1 avg = ((200−132)+
66+66)/3≈67. Node1 then calculates its workload relative
to the network average as q1 di f f = q1− q1 avg = −67, and
so sat(q1− q1 avg) = 0. In this manner, node1 has a more
up to date estimate of the (anticipated) workload at node2,
and unnecessary transfers are avoided. Upon receiving the 66

requests transferred from node3, node1 inserts the search
requests to its queue and continues processing them. The

load balancing algorithm, which uses a closed loop controller

based on anticipated work loads, works quite well in this

situation.
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Fig. 2. Workloads and average estimates on node3.

Figure 3 compares the tracking differences between local

workloads and average estimates on the three nodes. The

local workloads track the average estimates very well, and

the system settles quickly. Note that the database searches are

running in parallel and asynchronously on each search engine
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node. Only the changes of queue states on each node are

logged. Task processing (insertions and removals of tasks)

on node1, as well as node2, starts after receiving the tasks
transferred from node3.
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Fig. 3. Tracking differences on three nodes with initial tasks: q1 di f f ,
q2 di f f , q3 di f f for node1, node2, and node3 respectively.

B. Randomly Generated Requests

Consider the tasks to be collected together into blocks of

100 each by the search server. To illustrate the queuing up of

tasks on the search engine nodes, these blocks of 100 tasks

each are then sent randomly to the nodes in the network. In

this experiment, which also uses a group of three nodes, a

total of 1,000 search requests (tasks) are generated by a client

program by randomly selecting DNA profiles to be used as

targets for a search. Every 5ms the search server randomly
selects a search engine node and sends a block of 100 tasks.

This is to illustrate the queuing up of tasks on the nodes.

Although 100 tasks are sent every 5ms, this rate exceeds the
rate at which each queue can receive tasks and insert them

into a local queue. Thus, the tasks are received over a period

of about 140ms. While the search engine thread on each node
processes requests in its local queue, each node exchanges

queue information with the other nodes and redistributes the

tasks depending on the relative workload by running the

load balancing thread. Figure 4 shows the workload, average

estimate, and tracking difference on a representative node2.
The large upward transitions are caused by task arrivals (a

block of 100 tasks) from the client, while small upward

transitions are caused by received search requests and queue

insertions. The downward transitions are caused by removal

of tasks from a queue for service or to be transferred (in

blocks) to other nodes.

Figure 5 shows a comparison of average estimates com-

puted on three nodes with randomly generated requests.

When a new block of search requests arrives, the receiving

node updates its average, which creates a step transient that is

visible in the figure. The load balancing algorithm then evens

out the tasks and brings the average estimates together. For
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Fig. 4. Workloads, average estimates and tracking differences on node2
with random requests. Blue curve: workload q2, green: average estimate
q2 avg, and red: tracking difference q2 di f f .

t > 200ms, no new search requests arrive. The system settles
to a balanced state, and the average estimates on three nodes

closely follow each other.
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Fig. 5. Comparison of average estimates on three nodes with randomly
generated requests. The black, cyan and pink curve stands for q1 avg, q2 avg,
q3 avg on node1, node2, and node3 respectively.

Figure 6 shows the responses for 1,000 tasks arriving in

10 blocks on three nodes when the load balancing thread is

disabled. The search server randomly selects a search engine

node for each block transfer. The queues on the nodes are

not balanced. This leads to different completion times and a

larger completion time for the group.

C. Balancing on Multiple Nodes

This set of experiments show results for parallel searches

with load balancing on a larger network of multiple nodes

(n = 6). In this experiment, a total of 2,000 tasks are
randomly generated by a client program in 20 blocks of 100

tasks each. A block of 100 requests is randomly distributed
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Fig. 6. Responses of queue sizes on three nodes without load balancing.

by the search server every 5ms to a search engine node for
service. The load balancing threads on six nodes communi-

cate with each other and even out the workloads.

Figure 7 shows a comparison of average load estimates

measured on six nodes. When a new block of search requests

arrives, the receiving node updates its average, which creates

a step transient as shown in Figure 7. The load balancing

algorithm then evens out the tasks and brings the average

estimate close to that on other nodes. For t > 200ms, no new
search requests arrive. The system settles to a balanced state,

and the average estimates on the six nodes closely follow

each other.
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Fig. 7. Comparison of average estimates on six nodes with randomly
generated requests.

Notice that the previous experiment used a group of three

nodes for the incoming 1,000 randomly generated tasks (10

blocks of 100 tasks each), and this experiment uses a group

of six nodes to balance and service the incoming 2,000

randomly generated tasks (20 blocks of 100 tasks each).

The overall waiting time to complete all 2,000 tasks (the

maximum completion time in a group) is 377.4ms in this
experiment (see Figure 7), while it took 327.1ms to complete
all 1,000 tasks on three nodes in the previous experiment

(see Figure 5). For this case, the speed-up is 73% when the

number of nodes is doubled.

V. SUMMARY

A load balancing algorithm for parallel computing is

modeled as a nonlinear dynamic system incorporating both

time delays and processor resource constraints. A closed loop

controller is implemented that uses not only the local queue

size, but also an estimate of the number of tasks in transit

to the queue from other nodes. Experiments on a parallel

DNA database demonstrate the efficacy of the load balancing

strategy.
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