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Abstract
In this paper the problem of designing a fixed state
feedback control law which minimizes an upper bound
on linear-quadratic performance measures for m distinct
plants is reduced to a convex programming problem.
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1. Introduction
The problem considered here is the design of a fixed
state feedback control law u(t) = — K z(t) which minimizes
an upper bound on the performance measures

A
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each associated with one of the plants described by state
space equations

£j(t) = Ajz;(t) + Bju;(t) (2)

forall j € I, 2 {1,...,m}. In (1) the expectation opera-~
tor IE(-) is taken over random initial conditions satisfying
E{z(0)} = 0 and E{z(0)zT(0)} = I. This is referred to
here as simultaneous performance design. Standard linear-
quadratic assumptions are made for each system, namely,
all members of collection {Q;};er,, are positive semidefi-
nite and all members of {R;} e, are strictly positive defi-
nite. See a similar treatment in Balakrishnan and Vanden-
berghe [1]. Further, all systems are (A;, Bj)-controllable
and (4;, Q;/ ?)-observable.

It is well known (see, for example, Dorato, et al. [5])
that the performance measures in (1) are given by

J; = {P;}

where each P; satisfies, for a given K, the Lyapunov equa-

tion

P; (Aj - BjK) + (Aj — BjK)T.Pj
+Q; +KTR,K=0. (3)

In Paskota, et al. [11], nonlinear programming techniques
are used to minimize the combined performance measure

S = Ztr {PJ} (4)

i=1

for single-input, single-output systems. Because this op-
timization problem is not convex, only a local minimum
is assured. Thus even though a performance index of the
form in (4), that is, a positive linear combination of per-
formance measures tr{P;}, is often useful in generating
Pareto optimal [10] solutions, a local minimum guaran-
tees only a locally Pareto optimal solution. See, for exam-
ple, Vincent and Grantham [14]. Little can be said about
bounds on each term tr{P;}.

In this paper a guaranteed-cost approach (see Chang
and Peng [4]) is used and a minimization of a bound on
all the performance measures, tr{P} is sought, where

tr {P}} < tr (P} (5)

for all system indices j in set Ip,. It is well known (see
for example, Boyd, et al. [3] or Dorato, et al. [5]) that
with a change in matrix variables introduced in Bernus-
sou, et al. [2], this problem can be reduced to one of con-
vex programming with linear matrix inequality (“LMI”)
constraints, which can be solved numerically with com-
mercially available software. For example, an LMI Con-
trol Toolbox (Gahinet, et al. [6]) is available for use with
MATLAB. This approach has been suggested in both Ref-
erences (3] and [5] when Q; = @ and R; = R for all
system indices contained by set I,,,. Here, performance
function weighting matrices {Q;};er.. and {R;}jer,, vary
with each system and the details of reducing the simul-
taneous performance design problem is carried to a linear
matrix inequality convex programming problem. Finally,
the optimal guaranteed cost solution is compared to the
results of the numerical example given in [11].
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2. Reduction of the Guaranteed-Cost
Problem to a Convex Programming
Problem

As suggested in References [3] and [5], each instance
of distinct Lyapunov matrices P; in matrix equation (3)
is replaced by a single matrix P. Consider the associated
set of m Lyapunov matrix inequalities

P(A; — B;K) + (4; - B;K)' P
+Q; +KTR;K <0. (6)

A positive definite matrix solution P which satisfies each
of the m matrix inequalities, for a fixed gain K, is a
guaranteed upper bound on all performance measures in
{J;}jer. as indicated in expression (5). With the usual
Bernussou rational matrix description change of variables

P=Y"1, K=XY"1,

the matrix inequalities in (6) become

A;Y - B;X - XTBT +YAT
+YQ,;Y + XTR;X <0 (7)

for all system indices j in set I,,,. The basic “LMI Lemma”
(see, for example, Reference [3]) allows the conversion of
these guadratic (in matrix variables X and Y') inequalities
into equivalent linear matrix inequalities

(—A;Y + B;X [ Qi
+X7TB; - v AT 1/2
YA LEPX] |0

Q;%y
12 I
R/’X

where all members of {Q;/z}je]‘m and {R;:/z}]‘e[m
are symmetric factorizations of weighting matrices in
{Qj}jer.,. and {R;}jer,,, respectively, satisfying

Q/*Q* =@y,

3

R)’R}* =R,

7

This is a convex programming problem since tr{Y !} is
convex in matrix variable Y > 0; and the Lyapunov linear
matrix inequality constraints (8) or (9) define convex re-
gions for matrix variables X and Y. However, most of the
available software deals only with linear objective func-
tions. In fact, Nesterov and Nemirovskii [9, p. 7] state
that “ ... to solve a convex problem by an interior point
method [as found in the MATLAB LMI Toolbox], we should
first reduce the problem to one of minimizing a linear [em-
phasis added] objective over [a] convex domain (which is
quite straightforward).” To deal with this limitation the
linear matrix inequality

[z I ”

21 ] >0
is added to the other linear matrix inequality constraints
(8) and the objective function

Jin, J=tr{Z} .

is used instead of the right hand side of (10). Note that
the linear matrix inequality (11) implies Z > Y ~! via the
LMI Lemma, so that effectively a further upper bound is
minimized.

3. Example

An example found in Paskota, et al. [11] and a number
of other relevant references (Petersen [12]; Wu, et al. [15];
and Howitt and Luus [8]) is now used to demonstrate the
usage of the convex problem. A static state feedback gain
matrix K is to be found which simultaneously stabilizes
four different operating points of an airplane trajectory
in the vertical plane and minimizes the upper bound on
all linear-quadratic performance objectives (1). The four
operating points are given by a set of four state differen-
tial equations (2) assuming a scalar input u. The state
coefficient matrices are given as

for all system indices j in I,,,.

Note that if all members of {Q;};¢r,. are also strictly
positive definite (a more restrictive condition) then the
linear matrix inequality (8) may also be written

(-YA] - A;Y T
+B;X + X"B]) y X >0 ©)
Y Q7' 0 '
X 0 | Ry
The design objective becomes
. . -1
min tr {P} = min tr{y'} . (10)

- —0.9806 1741  96.15 |

A =] 02648 —-0.8512 —11.89 (12)
|0 0 -30 |
[ —0.6607 18.11 84.34

Ay = | 0.08201 —0.6587 —10.81 (13)
| o 0 -30 |
[ —1.702 50.72  263.5

A; 0.2201 -1.418 -31.99 (14)
|0 0 -30 '
[ —0.5162 26.96 1789

Ay —0.6806 —1.225 —30.38 | . (15)
|0 0 -30
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The control coefficient vectors b; are given as

[ —97.78 ] [ ~272.2 ]
b1 = 0 ) b2 = 0 5

| 30 | 30 |

[ —85.09 ] [ —175.6 ]
by = 0 ,  by= 0

| 30 | 30

In [11] all members of {Q;}jer,, and {R;}jer,. are set
equal to appropriately sized identity matrices. To be
able to compare the solution obtained in [11], where
> jer,, tr{F;} is minimized, with the results obtained by
minimization of an upper bound on all terms tr{P;}, the
same identity matrix assumptions are made herein.

The convex optimization problem for this example is
to minimize tr{Z} with respect to the matrix variables X,
Y, and Z subject to the Lyapunov linear matrix inequality
constraints (9).

Using LmiTooL documented by El Ghaoui, et al
[7] and the semidefinite programming algorithm Sp doc-
umented by Vandenberghe and Boyd [13], the optimal
points

X*=[ -0.2593 0.0061 0.0560 ]

3.3514 —-0.3781 -0.1683
Y*=| —0.3781 0.0569 0.0208
| —0.1685 0.0208  0.0387
[ 1.2380 7.7939  1.2020
Z* = 7.7939 709536 —4.1979
| 1.2020 —4.1979 33.3622

are obtained, resulting in an optimal performance bound
of tr{Z*} = 105.5538. The optimal Lyapunov matrix is

1.2380 7.7939  1.2020
P*=(Y*)"'=| 7.7939 70.9536 —4.1979 | ,
1.2020 —4.1979 33.3622

which leads to
tr{P*} = 105.5538 .

Since K* = X*(Y*)™!, the optimal single input static
gain K is

K* =] -02063 —1.8247 1.5305 ] .

For the purposes of comparison, the “scalarized” cost con-
trol results of Paskota, et al. [11] were confirmed using
their nonlinear programming scheme. This resulted in a
locally optimal gain vector of

K*=[ -1.0964 —8.3140 4.2964 ]

Table 1 shows the values of each tr{P;} when the respec-
tive optimal gains K* are used for control and solving the
resulting Lyapunov equation (3).

The following points are worth noting:

Guaranteed-Cost  Scalarization
tr{ P} =241 tr{P,} = 2.51
tI‘{PQ} = 10.4 tr{Pp,} =9.62
tr{Ps} =153 tr{Ps} =14.1
tr{Ps} = 5.22 tr{Py} = 5.29

Table 1: Comparison of Results from Convex Guaranteed-
Cost Design and Scalarization Design

1. The guaranteed-cost bound tr{P} = 105.5064 is
conservative with respect to the actual performance
levels achieved for each system

max tr{P;} =153 .

2. The scalarization approach of [11] may yield a lo-
cally Pareto optimal solution (for the vector opti-
mization problem with vector components tr{P;}),
but not necessarily a globally Pareto optimal point.
The guaranteed-cost vector performance measure is
not inferior to the scalarization approach since at
least one component, that is,

tr {Pl} =241
is less than the scalarization component, namely,

tr {Pl} =2.51.

3. If the Euclidean norms of the gain matrices K are
compared, a scalarization method gain

| Ksll = 9.4

is obtained, versus that of the convex guaranteed-
cost method

K| = 2.4.

The guaranteed-cost design yields lower feedback
gains. However this may be true only for this ex-
ample.

4. Summary

In this paper a guaranteed-cost approach is taken for
the performance design of multiple model systems. The
problem is reduced to a convex linear matrix inequality
problem which can be solved with commercially available
software. A numerical example taken from [11] is used to
compare the guaranteed-cost results obtained here with
the scalarization results obtained in [11]. From the vector
optimization point of view (where one attempts to make
each component measure tr{P;} as small as possible) the
two results are not comparable. Neither solution is “su-
perior,” in the sense of Pareto, to the other. However in
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the particular example considered in [11], the norm of the
feedback gain matrix does turn out to be smaller for the
guaranteed-cost design than for the scalarization design.
It would be of interest to explore the simultaneous per-
formance problem considered in the full context of vector
optimization.
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