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Abstract 
In this paper the problem of designing a fixed state 

feedback control law which minimizes an upper bound 
on linear-quadratic performance measures for m distinct 
plants is reduced to a convex programming problem. 
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1. Introduction 
The problem considered here is the design of a fixed 

state feedback control law u(t)  = -Kz(t )  which minimizes 
an upper bound on the performance measures 

each associated with one of the plants described by state 
space equations 

A for all j E I, = (1 , .  . . , m}.  In (1) the expectation opera- 
tor a(-) is taken over random initial conditions satisfying 
E{s(O)} = 0 and E{z(0)zT(O)} = I .  This is referred to 
here as simultaneous performance design. Standard linear- 
quadratic assumptions are made for each system, namely, 
all members of collection {Qj]jCz,,, are positive semidefi- 
nite and all members of {Rj}jEf,,, are strictly positive defi- 
nite. See a similar treatment in Balakrishnan and Vanden- 
berghe [l]. Further, all systems are (Aj ,  Bj)-controllable 
and ( A j ,  Qi’2)-observable. 

It is well known (see, for example, Dorato, et al. [5]) 
that the performance measures in (1) are given by 

J j  = tr  {Pj} 

where each Pj satisfies, for a given K ,  the Lyapunov equa- 

tion 

Pj (Aj - BjK)  + (Aj  - BjK)T Pj 

+ Qj -I- KTRjK = 0 . (3) 

In Paskota, et al. [ll], nonlinear programming techniques 
are used to minimize the combined performance measure 

(4) 
j=1 

for single-input , single-output systems. Because this op- 
timization problem is not convex, only a local minimum 
is assured. Thus even though a performance index of the 
form in (4), that is, a positive linear combination of per- 
formance measures tr{Pj}, is often useful in generating 
Pareto optimal [lo] solutions, a local minimum guaran- 
tees only a locally Pareto optimal solution. See, for exam- 
ple, Vincent and Grantham [14]. Little can be said about 
bounds on each term tr{ Pj 1 .  

In this paper a guaranteed-cost approach (see Chang 
and Peng [4]) is used and a minimization of a bound on 
all the performance measures, tr{P) is sought, where 

tr  {Pj} < tr  { P }  ( 5 )  

for all system indices j in set I,. It is well known (see 
for example, Boyd, et al. [3] or Dorato, et al. [5]) that 
with a change in matrix variables introduced in Bernus- 
sou, et al. [2], this problem can be reduced to one of con- 
vex programming with linear matrix inequality (“LMI”) 
constraints, which can be solved numerically with com- 
mercially available software. For example, an LMI Con- 
trol Toolbox (Gahinet, et al. [SI) is available for use with 
MATLAB. This approach has been suggested in both Ref- 
erences [3] and [5] when Qj  = Q and Rj = R for all 
system indices contained by set I,. Here, performance 
function weighting matrices {Qj}jc~,,, and { Rj} je~ , , ,  vary 
with each system and the details of reducing the simul- 
taneous performance design problem is carried to a linear 
matrix inequality convex programming problem. Finally, 
the optimal guaranteed cost solution is compared to the 
results of the numerical example given in [ll]. 
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2. Reduction of the Guaranteed-Cost 
Problem to a Convex Programming 

Problem 
As suggested in References [3] and [5], each instance 

of distinct Lyapunov matrices Pj in matrix equation (3) 
is replaced by a single matrix P .  Consider the associated 
set of m Lyapunov matrix inequalities 

(-YAjT - AjY 
+BjX + Y XTBjT) 

X 

P ( A ~  - B ~ K )  + ( A ~  - B , K ) ~  P 
f Qj + KTRjK < 0 . (6) 

9;’ x T ] > O .  0 (9) 

0 Ri’ 

A positive definite matrix solution P which satisfies each 
of the m matrix inequalities, for a fixed gain K ,  is a 
guaranteed upper bound on all performance measures in 
{ & } j € ~ , , ,  as indicated in expression (5). With the usual 
Bernussou rational matrix description change of variables 

P = Y - ’ ,  K = X Y - l ,  

the matrix inequalities in (6)  become 

AjY - BjX - X’BjT + YAj’ 
+ YQjY + XTRjX < 0 (7) 

for all system indices j in set I,. The basic “LMI Lemma” 
(see, for example, Reference [3]) allows the conversion of 
these quadratic (in matrix variables X and Y )  inequalities 
into equivalent linear matrix inequalities 

where all members of {Q;/2} jEIm and {R; /2} jEIm 
are symmetric factorizations of weighting matrices in 
{ Q j }  jeIm and {Rj}j€Im , respectively, satisfying 

1 / 2  112 112 1/2 Qj Qj = Q j  R, Rj = R j  

for all system indices j in I,. 
Note that if all members of {Qj}jcIm are also strictly 

positive definite (a more restrictive condition) then the 
linear matrix inequality (8) may also be written 

The design objective becomes 

min tr  { P }  = min t r  {U- ’ }  . 
KJ’ X,Y 

This is a convex programming problem since tr(Y-l} is 
convex in matrix variable Y > 0; and the Lyapunov linear 
matrix inequality constraints (8) or (9) define convex re- 
gions for matrix variables X and Y .  However, most of the 
available software deals only with linear objective func- 
tions. In fact, Nesterov and Nemirovskii [9, p. 71 state 
that “ . . . to solve a convex problem by an interior point 
method [as found in the MATLAB LMI Toolbox], we should 
first reduce the problem to one of minimizing a linear [em- 
phasis added] objective over [a] convex domain (which is 
quite straightforward).” To deal with this limitation the 
linear matrix inequality 

is added to the other linear matrix inequality constraints 
(8) and the objective function 

is used instead of the right hand side of (10). Note that 
the linear matrix inequality (11) implies Z > Y-l via the 
LMI Lemma, so that effectively a further upper bound is 
minimized. 

3. Example 
An example found in Paskota, et al. [ll] and a number 

of other relevant references (Petersen [12]; Wu, et al. [15]; 
and Howitt and Luus [SI) is now used to demonstrate the 
usage of the convex problem. A static state feedback gain 
matrix K is to be found which simultaneously stabilizes 
four different operating points of an airplane trajectory 
in the vertical plane and minimizes the upper bound on 
all linear-quadratic performance objectives (1). The four 
operating points are given by a set of four state differen- 
tial equations (2) assuming a scalar input U. The state 
coefficient matrices are given as 

-0.9896 17.41 96.15 
A 1 =  [ 0.2648 -0.8512 -11.89 

0 0 -30 [ -0.:7 18.11 84.34 

[ -1:2 50.72 263.5 

A2 = 0.08201 -0.6587 -10.81 
0 - 30 

1 A3 = 0.2201 -1.418 -31.99 
0 -30 

-0.5162 26.96 178.9 
A4= [ -0.6896 -1.225 -30.38 

0 0 - 30 
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The control coefficient vectors bj are given as 

-97.78 -272.2 
b 1 = [  :o ] , b 2 = [  ,Oo ] 

-85.09 -175.6 
b 3 = [  3”o ] 9 b 4 = [  3”o ] . 

In [ll] all members of { Q j } j € ~ , , ,  and {Rj}j€~,,, are set 
equal to appropriately sized identity matrices. To be 
able to compare the solution obtained in [ll], where 
CjEIm tr{Pj} is minimized, with the results obtained by 
minimization of an upper bound on all terms tr{Pj}, the 
same identity matrix assumptions are made herein. 

The convex optimization problem for this example is 
to minimize tr{Z} with respect to the matrix variables X, 
Y ,  and Z subject to the Lyapunov linear matrix inequality 
constraints (9). 

Using LMITOOL documented by El Ghaoui, et al. 
[7] and the semidefinite programming algorithm SD doc- 
umented by Vandenberghe and Boyd [13], the optimal 
points 

X* = [ -0.2593 0.0061 0.0560 ] 

1 
1 

1 

3.3514 -0.3781 -0.1683 
Y * =  [ -0.3781 0.0569 0.0208 

-0.1685 0.0208 0.0387 
1.2380 7.7939 1.2020 

Z* = 7.7939 70.9536 -4.1979 [ 1.2020 -4.1979 33.3622 

are obtained, resulting in an optimal performance bound 
of tr{Z*} = 105.5538. The optimal Lyapunov matrix is 

1.2380 7.7939 1.2020 
P* = (Y*)-’ = 7.7939 70.9536 -4.1979 , [ 1.2020 -4.1979 33.3622 

which leads to 

tr{P*} = 105.5538. 

Since K* = X* (Y*)-’, the optimal single input static 
gain K is 

K* = [ -0.2063 -1.8247 1.5305 ] . 
For the purposes of comparison, the “scalarized” cost con- 
trol results of Paskota, et al. [ll] were confirmed using 
their nonlinear programming scheme. This resulted in a 
locally optimal gain vector of 

K* = [ -1.0964 -8.3140 4.2964 ] 
Table 1 shows the values of each tr{Pj} when the respec- 
tive optimal gains K* are used for control and solving the 
resulting Lyapunov equation (3). 

The following points are worth noting: 

tr{Pz} = 10.4 
tr{P3} = 15.3 

tr{Pz} = 9.62 
tr{P3} = 14.1 

Table 1: Comparison of Results from Convex Guaranteed- 
Cost Design and Scalarization Design 

1. The guaranteed-cost bound tr{P} = 105.5064 is 
conservative with respect to the actual performance 
levels achieved for each system 

max t r  {Pj} = 15.3 . 
I E I ,  

2. The scalarization approach of [ll] may yield a lo- 
cally Pareto optimal solution (for the vector opti- 
mization problem with vector components tr{Pj}), 
but not necessarily a globally Pareto optimal point. 
The guaranteed-cost vector performance measure is 
not inferior to the scalarization approach since at 
least one component, that is, 

t r  {PI}  = 2.41 

is less than the scalarization component, namely, 

t r  { P I }  = 2.51 . 

3. If the Euclidean norms of the gain matrices K are 
compared, a scalarization method gain 

I l K l I  = 9.4 

is obtained, versus that of the convex guaranteed- 
cost method 

The guaranteed-cost design yields lower feedback 
gains. However this may be true only for this ex- 
ample. 

4. Summary 
In this paper a guaranteed-cost approach is taken for 

the performance design of multiple model systems. The 
problem is reduced to a convex linear matrix inequality 
problem which can be solved with commercially available 
software. A numerical example taken from [ll] is used to 
compare the guaranteed-cost results obtained here with 
the scalarization results obtained in [ll]. From the vector 
optimization point of view (where one attempts to make 
each component measure tr{Pj} as small as possible) the 
two results are not comparable. Neither solution is “su- 
perior,” in the sense of Pareto, to the other. However in 
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the particular example considered in [ll], the norm of the 
feedback gain matrix does turn out to be smaller for the 
guaranteed-cost design than for the scalarization design. 
It would be of interest t o  explore the simultaneous per- 
formance problem considered in the full context of vector 
optimization. 
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