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Abstract 

This paper considers the problem of stabilizing linear and 
nonlinear continuous-time systems with state and measure- 
ment delay. For linear systems we address stabilization 
via fixed-order dynamic output feedback compensators and 
present sufficient conditions for stabilization involving a sys- 
tem of modified Riccati equations. For nonlinear systems we 
provide sufficient conditions for the design of static full-state 
feedback stabilizing controllers. The controllers obtained are 
delay-independent and hence apply to systems with infinite de- 
lay. 

1. Introduction 
In dynamical systems such as the control of flexible 

structures with non-collocated sensors and actuators, tele- 
operators, biological systems [l], and electrical networks 
[2], time delay arises frequently and can severely degrade 
closed-loop system performance and in some cases drive 
the system to instability. Since controllers designed with 
the assumption of instantaneous information and power 
transfer may fail to stabilize dynamic systems with time 
delay [3] it is of paramount importance that delay system 
dynamics be accounted for in the control-system design 
process. There exists an extensive literature devoted to 
the control of dynamical systems with time delay (see, 
for example, [4-121 and the numerous references therein). 
Three main approaches can be distinguished for designing 
stabilizing controllers for delay systems. Namely: 

1) Stabilization independent of delay amount [13,14]: In 
this approach the delay can be large (even infinite) 
withaut deotabilizing the closed-loop system. How- 
ever, the conditions for stabilization are often conser- 
vat ive. 

ti) Stabilization dependent on delay amount [15-171: 
Such approaches rely on Razumikin-like theorems [18] 
and provide stabilization conditions if the delay is less 
than a given amount. 
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iii) Stabilization based on delay amount [19,20]: In this 
approach there exist delay windows which allow a 
stabilizing bompensator to exist, while no stabiliz- 
ing compensators are possible outside these windows. 
This approach however applies to a restricted class of 
systems. 

In this paper we design feedback controllers which 
are independent of the delay amount. Furthermore, we 
address both linear and nonlinear dynamical systems. 
Specifically, we present a rigorous development of suf- 
ficient conditions via fixed-order dynamic compensation 
and static full-state feedback controllers for stabilization 
of systems with state and measurement delay. For lin- 
ear plants these sufficient conditions are in the form of 
a coupled system of algebraic Riccati equations that ex- 
plicitly characterize dynamic controllers of fixed dimen- 
sion while for nonlinear plants our sufficient condition is 
given by a modified Riccati equation for characterizing 
static full-state feedback controllers. We emphasize that 
our approach is constructive in nature rather than existen- 
tial. In particular, as opposed to the results of [6] which 
are based on the total stability theorem [21] our sufficient 
conditions provide explicit formulae for controller gains 
that guarantee stabilization of systems with time delay. 
For the linear plant case, in order to account for closed- 
loop system performance our framework also includes min- 
imization of a given performance functional. Finally, even 
though for simplicity of exposition we do not address sys- 
tem parametric uncertainty as in [7,22,23] the proposed 
approach can be merged with the guaranteed cost control 
approach [24] to provide robust stability and performance 
in the face of system uncertainty and system delay. 

The contents of the paper are as follows. In Section 2 
we state the problem of fixed-order dynamic compensation 
for systems with state and measurement delay. Sufficient 
conditions for stabilization of systems with time delay are 
given in Section 3. Section 4 provides design equations 
for characterizing fixed-order dynamic controllers for lin- 
ear systems with time delay. In Section 5 ,  we state the 
full-state feedback control problem for nonlinear systems 
with time delay and provide design equations for full-state 
feedback controllers. Section 6 provides two illustrative 
numerical examples. Finally, Section 7 gives conclusions. 

3220 



Nomenclature 

R, Rrxs,  Rr 

O T ,  ()-I, t r  () - transpose, inverse, trace 
I T ,  Or 

- real numbers, T x s real matrices, 
Rrx l  

- r x r identity matrix, r x T- zero 
matrix 
Euclidean vector norm 
minimum eigenvalue of the 
symmetric matrix 2 
real positive scalars 
positive integers; 1 5 nc 5 n; 
i i = n + n ,  
n--, m--, 1 - ,  ne-, ii - dimensional 
vectors 
n x n, n x m ,  1 x n matrices 
n x n,  1 x n matrices 
nc x nclnc  x l ,m x n,,m x n 
matrices 
n x n,l x 1 matrices 
n x n ,m x m matrices 

2. Fixed-Order Controller Synthesis for Systems 
with Time Delay 

In this section we introduce the fixed-order dynamic 
compensation problem for linear systems with state and 
measurement delays. Specifically, given the nth-order sta- 
bilizable and detectable dynamical system, where stabiliz- 
ability and detectability are defined in the sense of [25], 
with state and measurement delay 

k ( t )  = A z ( t )  + Adx(t  - T d )  4- Bu( t ) ,  t E [o, W),  

Td > 0, x(t) = d(t),  t E [-Tdr 011 #(o) = 201 

y ( t )  = c X ( t )  + C d X ( t  - Td), 

(1) 
(2) 

where u( t )  E R'", y ( t )  E R', and # : R+ -+ Rn is a contin- 
uous vector valued function specifying the initial state of 
the system, determine an n:h-order (1 5 nc 5 n )  dynamic 
compensator 

i c ( t )  = Acxc(t) + BCy(t),  ~ ~ ( 0 )  = zco, (3) 
u( t )  = C c z c ( t ) ,  (4) 

which satisfies the following design criteria: 

ble; and 
i) the closed-loop system (1)-(4) is asymptotically sta- 

ii) the performance functional 

A J ( X ( t ) , X c ( t ) , X ( t -  Td)) = 

lm L ( z ( t ) ,  z c ( t ) ,  z( t  - T d ) ) d t ,  (5) 

where L : Pn x Rnc x Pn --t P, is minimized. An explicit 
characterization of L ( z ( t ) ,  z C ( t ) ,  z ( t  - ~ d ) ) ,  t 2. 0, Td > 0, 
is given in Section 3. 

3. Sufficient Conditions for Stabilization of Sys- 
tems with Time Delay 

In this section we provide a Riccati equation that guar- 
antees that the closed-loop system (1)-(4) consisting of 
the nth-order time-delayed system (l) ,  (2) and the nS1- 
order dynamic compensator (3), (4) is asymptotically sta- 
ble. First note that for a given fixed-order controller 
(Acl  B,, C,) the closed-loop system (1)-(4) can be writ- 
ten as 

i ( t )  Az( t )  + A d z ( t  - Td),  ?(o) = 20, 

t E [oioo), Td > 0, (6) 

where 

For the statement of the next result define 

1 .  i: [ I n  Onxnc 
On,xn On, 

Theorem 3.1 [26]. Let (A,, B,, C,) be given. Suppose 
there exists an ii x ii positive-definite matrix P and scalars 
C Y ,  E > 0 such that 

0 = ATP + PA + E P  + a 2 i  + a-2P&AZP + R ,  (7) 

where I?: is an ii x ii nonnegative-definite matrix. Then 
the function 

t 
V ( 2 )  = zT& + C Y 2  Z T ( s ) i Z ( s ) d s ,  ( 8 )  Ld 

is a Lyapunov function that guarantees that the closed- 
loop system (6) is globally asymptotically stable. 

Next, we consider an explicit characterization of 
Specifically, let R = L ( z ( t ) , x , ( t ) , z ( t  - T d ) )  in (5) .  

, where R I  0 and R2 > 0, and de- [ ? CTRzC, O I  
fine 

L ( z ( t ) ,  z c ( t ) ,  X ( t  - Td)) 6 z T ( ( t ) [ C P  + + aP2kAd 
.AzP]z( t )  + uT(t)R2u(t)  + c y 2 Z T ( t  - T d ) f ? ( t  - ~ d )  

- 2 2 3  - T d ) f i z P z ( t ) ,  t L 0, (9) 

where i1 2 [ 7 1. Now, since ~ ( t )  ---t o as t -+ oo, 

where E ( t ) ,  t 2 0, satisfies (6), the performance functional 
( 5 )  reduces to 

00 

J ( Z ( t ) ,  z c ( t ) t  Z ( t  - T d ) )  = - 1 v ( Z ) d t  

= V(Z(0)) - hlV(Z(t)) 
= ZT(O)k (O)  + cp, (10) 
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0 

where @ fi q5T(s)q5(s)ds is a positive constant. With 

L ( s ( t ) ,  sc( t ) ,  s ( t  - r d ) )  given by (9) the performance func- 
tional (5) has the same form as the H:! cost in standard 
LQG theory. Specifically, J(Z(0)) = Z T ( 0 ) F Z ( O )  + @ = 
t r  p Z ( 0 ) Z T ( O )  + @. Hence, we replace Z ( 0 ) Z T ( O )  by 

J_, 

1,  where V1 2 0 and V2 > 0, and ' ' 7 BCV2BT 
proceed by determining controller gains that minimize 
t r  PC+@. This leads to the following optimization prob- 

lem. 
Auxiliary Minimization Problem. Determine 

(A,,-E,, C,) that minimizes J ( k ,  A,, B,, C,)  5 
tr  PV where > 0 satisfies (7) and such that 

( A c ,  B,,  C,) is minimal. 
It follows from Theorem 3.1 that by deriving necessary 

conditions for the Auxiliary Minimization Problem we ob- 
tain sufficient conditions for characterizing dynamic out- 
put feedback controllers ensuring stabilization of closed- 
loop systems with time delay. 

4. Fixed-Order Dynamic Compensation for Sys- 
tems with Time Delay 

In this section we present the main theorem characteriz- 
ing fixed-order dynamic controllers for (l), (2). Note that 
for design flexibility the compensator order n, may be less 
than the plant order n. We shall require for technical rea- 
sons that C d C r  = 02V2, where the nonnegative scalar cr 
is a design variable. The following lemma is required for 
the statement of main theorem. 

Lemma 4.1 [24].  Let Q,k be n x n nonnegative- 
definite matrices and suppose that rank Q P  = n,. Then 
there exist n, x n matrices G ,  and an n, x nc invertible 
matrix M , unique except for a change of basis in Rnc, such 
that 

*,. 

QP = G T M r ,  rGT = Inc. (11) 

Furthermore, the n xn  matrices r f\ G T r  and 71 I n - r  
are idempotent and have rank n, and n - n,, respectively. 

For convenience in stating the main result of this sec- 
tion we define the notation S f ( I  + a-'u2QP)-' ,  for 
arbitrary n x n nonnegative-definite matrices Q ,  1; and 

Q a  2 
A ,  5 A + -€In,  

Q[C + o ~ - ~ C ~ A , ' ( P  + $ ) I T ,  
1 
2 

A P  f A ,  - SQaVT1(C + ( u - ~ C ~ A Z P )  

+a - 2 ~ d ~  ZP,  
AQ f A ,  + C 2 A d A : ( P  + k )  

- ~ Y - ~ A ~ C : V ~  - 1  Q , S  T T A  P ,  

A$ fi A ,  - B R ; ~ B ~ P  + a - 2 ~ d ~ z ~ ,  

for arbitrary P , Q , @  E Rnxn and cy,e,o > 0. Note that 
since Q , P  are nonnegative definite and the eigenvalues 
of Q P  coincide with the eigenvalues of the nonnegative- 
definite matrix Q 1 / 2 @ Q 1 / 2 ,  it follows that Q P  has nonneg- 
ative eigenvalues. Thus, the eigenvalues of I + a-'u'QP 
are all greater than one so that S exists. 

Theorem 4.1. Assume a , ~ , o  > 0 and suppose there 
exist n x n nonnegative-definite matrices P , Q , P ,  and Q 
satisfying 

o = A T P  + P A ,  + R~ + a 2 ~ ,  + C ~ P A ~ A ~ P  

- P B R ; ~ B ~ P  + T : P B R ; ~ B ~ P T ~ ,  (12) 

(13) 

0 = AQQ + QA;  + VI - SQaVrlQTST 
-1 T T T  +71SQaV2 Q a S  71,  

o = A$@ + P A $  + a - 2 P [ 0 2 ~ ~ , ~ ; 1 ~ z ~ T  - 

* v-l 2 Q ,  T S T -  SQaVFICdAZ]P + ( Y - ~ P A ~ A ~ I ;  
+ P B R i l B T P  - r ? P B R T I B T P r l ,  

0 = AQQ +QAT Q + S Q a V c l Q z S T  
-1 T T T  -71SQaV2 Q a S  71 ,  

^ ^  

rank Q = rank P = rank Q P  = n,, 

and let A,, B,, and C, be given by 

A ,  = r [ A  - SQaVT1(C + f f W 2 C d A z P )  
+ ( c x - ~ A ~ A :  - B R T I B T ) P ] G T ,  

B ,  = rSQ,VT1 ,  
c, = - R ; ~ B ~ P G ~ .  

Then 

p + p  -GP G P G ~  - P G T 1  ' P =  [ 
satisfies (7) and (A, ,  B,,  C,) is an extrema1 of J ( k ,  A,, B,,  
C c ) .  Furthermore, the feedback interconnection of the 
delay system (l), ( 2 )  and the fixed-order controller (3), 
(4) is asymptotically stable for all Td > 0. Finally, the 
cost J ( P ,  A,, B,, C,)  is given by 

J ( P ,  A,, B,, c,) = t r [ (P + P ) v ~  
+ @ S Q a V ~ l Q ~ S T ] .  ( 2 0 )  

Proof. The proof is constructive in nature. Specifi- 
cally, first we obtain necessary conditions for the Auxil- 
iary Minimization Problem and show by construction that 
these conditions serve as sufficient conditions for closed- 
loop stability. For details of a similar proof see [27]. U 

In the full-order case set n, = n so that r = G = r = In 
and 71 = 0. In this case the last term in each of (12)-(15) 
is zero and (15) is superfluous. 
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5. Full-State Feedback Control for Nonlinear 
Systems with Time Delay 

In this section we introduce the full-state feedback con- 
trol problem for nonlinear systems with delay. Specifically, 
given the dynamical system with nonlinear state delay 

.(t) = A z ( t )  + fd(a:(t - Td)) + B U ( t ) ,  t E [o, OO), 

Td > 0, z ( t )  = t E [--7dr0], 4(0) = 20, 
f d ( 0 )  = 0, (21) 

where z E B", U E R", fd : W+ + Wnl and $J : lhp+ + Rn 
is a continuous vector valued function specifying the initial 
state of the system, determine a full-state feedback control 
law 

U ( t )  = KZ( t ) ,  (22) 

such that the closed-loop system (21), (22) is asymptoti- 
cally stable. 

Next, we show that if fd(*) in (21) satisfies llfd(z)112 5 
yllzll2, where z E W" and y > 0, we can construct a 
full-state feedback control law (22) to stabilize the non- 
linear time-delay system (21) independent of the delay 
amount Td. This result is an extension of the result in [28] 
where a stabilizing state feedback controller was obtained 
for purely linear time-delay systems. 

Theorem 5.1 [26]. Let (Ifd(Z)(12 5 y ( ( z ( ( 2 ,  where z E 
R" and y > 0, and suppose there exists an n x n positive- 
definite matrix P such that 

0 = A T P  + P A  + - 2PBRZ1BTP + R I ,  (23) 

where a > 0, Xmln(R1) > a 2 y 2 ,  and R2 > 0 . Further- 
more, let the feedback control gain K in (22) be given 
by 

K = - R ; ~ B ~ P .  (24) 

Then, for all Td > 0, the closed-loop system (21), (22) is 
globally asymptotically stable with Lyapunov function 

t 
v(Z) = ZTpZ + C y 2  f z ( Z ( S ) ) f d ( Z ( S ) ) d S .  (25) Ld 

6. Illustrative Numerical Examples 

In this section we provide two numerical examples to 
demonstrate the proposed Riccati equation approach for 
delay systems. For simplicity we consider the design of 
full-order dynamic compensators and full-state feedback 
controllers. The design equations (12)-(15) were solved 
using a homotopy continuation algorithm. For details of 
a similar algorithm see [27]. 

Example 6.1. Consider the second-order system 

~ 
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with design data VI = 0 . 0 1 1 2 ,  V2 = 1, RI = 0.512, R2 = 1, 
a = 25, and o = 1. Using Theorem 4.1 a full-order dy- 
namic compensator was designed. To illustrate the closed- 
loop behavior of the system let ~ ( 0 )  = [ 0.4 -6 ]' 
and let 4 ( t )  = [ -384t + 0.4 -480t - 6 ] for t E 
[-0.025,0]. Figure 1 provides a comparison of the free 
response of the controlled system states with an LQG con- 
troller and the controller designed using Theorem 4.1. 

T 

Example 6.2. To illustrate the design of full state- 
feedback control for dynamic systems with nonlinear state 
delay consider 

yd-, for y > 0.7. Let y = 0.75 and choose the 
design parameters R1 = I 2 ,  R2 = 1, and a = 1.3. Using 
Theorem 5 . 1 ,  we obtain, 

T 9.1707 6.0039 -6.0039 
= [ 6.0039 4.9379 ] ' = [ -4.9379 ] ' 

To illustrate the closed-loop behavior of the system let 
z(0) = [ 3 1 1' and let $(t)  = [loot + 3 -200t + 1IT 
for t E [ - 0 . 0 1 , 0 ] .  Figure 2 provides a comparison of the 
free response of the controlled system states with an LQR 
controller and the controller designed using Theorem 5.1. 

7. Conclusion 

In this paper we developed fixed-order dynamic output 
feedback controllers and full-state feedback controllers for 
linear and nonlinear continuous-time systems with time 
delays, respectively. Specifically, for linear continuous- 
time systems with state and measurement delay we pre- 
sented sufficient conditions via fixed-order dynamic com- 
pensation. For nonlinear continuous-time systems with 
nonlinear state delay a constructive procedure was used to 
obtain full-state feedback stabilizing controllers. For both 
cases the controllers obtained were delay-independent. 
Two numerical examples were presented to illustrate the 
effectiveness of the proposed design approach. 
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Figure 1: Comparison of LQG and Theorem 4.1 Designs: 
Example 6.1 

Figure 2: Comparison of LQR and Theorem 5.1  Designs: 
Example 6.2 
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