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Abstract 

In this paper we develop an optimality-based framework 
for designing controllers for discrete-time nonlinear cas- 
cade systems. Specifically, using a nonlinear-nonquadratic 
optimal control framework we develop a family of globally 
stabilizing backstepping-type controllers parameterized by 
the cost functional that is minimized. Furthermore, it is 
shown that the control Lyapunov function guaranteeing 
closed-loop stability is a solution to the steady-state Bell- 
man equation for the controlled system and thus guaran- 
tees both optimality and stability. 

1. In t roduct ion  

Since most physical processes evolve naturally in con- 
tinuous time, it is not surprising that the bulk of non- 
linear control theory has been developed for continuous- 
time systems. Nevertheless, it is the overwhelming trend 
to implement controllers digitally. Despite this fact the 
development of nonlinear control theory for discrete-time 
systems has lagged its continuous-time counterpart. This 
is in part due to  the fact that concepts such as zero dy- 
namics, normal forms, and minimum phase are much more 
intricate for discrete-time systems. For example, in con- 
trast to the continuous-time case, technicalities involving 
passivity analysis tools needed to  prove global stability via 
smooth feedback controllers [l] as well as system relative 
degree requirements [2] are more involved in the discrete- 
time case. 

Recent work involving differential geometric methods [3] 
employing concepts of zero dynamics and feedback lin- 
earization have been applied to discrete-time systems. In 
particular, these results parallel continuous-time results 
on linearization of nonlinear systems via state and out- 
put feedback. However, as in the continuous-time case, 
these techniques cancel out system nonlinearities and may 
therefore lead to  inefficient designs since the resulting feed- 
back linearizing controller may generate large control ef- 
fort to cancel beneficial nonlinearities. 

Backstepping control for continuous-time systems has 
recently received a great deal of attention in the non- 
linear control literature [4]. The popularity of this con- 
trol methodology can be explained in a large part due to 
the fact that it provides a framework for designing sta- 
bilizing nonlinear controllers for a large class of nonlin- 
ear cascade systems. Even though discrete-time recur- 
sive backstepping techniques have not been developed, 
the closest discrete-time analog to backstepping is given 
in [2,5 . Specifically, in [2,5] discrete-time passivity analy- 

guaranteeing global asymptotic stability for block cascade 
discrete-time systems. 

In this paper we develop an optimality-based control 
design theory for nonlinear discrete-time cascade systems. 
The key motivation for developing an optimal nonlinear 
control theory framework for discrete-time cascade sys- 

sis too 1 s are used to  construct control Lyapunov functions 

~~~ ~ 

This research was supported in part by NSF under Grant 
ECS-9496249 and AFOSR under Grant F49620-96-1-0125. 

Electrical Engineering Department 
University of New Mexico 
Albuquerque, NM 87131 

tems is that it provides a family of candidate controllers 
parameterized by the cost functional that is minimized. 
In order to address the optimality-based nonlinear con- 
trol problem we use the nonlinear-nonquadratic optimal 
control framework developed in [6]. The basic underly- 
ing ideas of the results in [6 rely on the fact that the 
steady-state solution of the d iscrete-time Bellman equa- 
tion is a control Lyapunov function for the nonlinear con- 
trolled system thus guaranteeing both optimality and sta- 
bility. Finally, we use the following standard notation. 
Let N n x n  (resp., Pnx") denote the set of n x n nonneg- 
ative (resp., positive) definite matrices and let N denote 
the set of nonnegative integers. 

2. Opt imal  Control for Nonlinear Systems 

In this section we consider the nonlinear system 

z ( k +  1) = f (z(k))  + g ( z ( k ) ) ~ ( k ) ,  4 0 )  = 50, k E NI (1) 

where z E R", U E R", f : R" -+ R" such that f(0) = 0, 
g : R" 4 Rnx", with performance criterion 

J(zo,.(.)) = cr=lJ [Ll(Z(k)) + L2(4k))U(k) 
+uT ( I C )  R s ~ ( k ) ] .  (2) 

where L1 : Rn -+ R,L2 : Rn -+ RIx", and R2 E IF'"'". 
Furthermore, define the set of asym totically stabilizing 
controllers for the nonlinear system &) by 

S(Q) f {U : R" x N -+ R" : x(.) given by (1) 
satisfies z ( k )  -+ 0 as IC -+ CO}. 

Theorem 2.1. Consider the controlled system (1) with 
performance functional (2). Assume there exist functions 
V : Rn -+ EX, L2 : R" -+ RWlxm, P12 : Rn -+ Rlxm,  and a 
nonnegative-definite function P2 : R" 4 N m x m  such that 

Lz(0) = 0,  P12(0) = 0,  V(0) = 0, (3) 
V(z) > 0, 5 E R", z # 0, (4) 

V[f(.) - &7(z)(R2 + P z ( 4 - l  

(5) 

V(f(.) + d.).) = V(f(.)) + k ! ( Z ) U  + .TP2(4U, (6) 

.LT(Z)] - V ( 5 )  < 0, 5 E R", z # 0, 

where V ( x )  a CO as [lxv 4 00. Then the solution z ( k )  = 
0, k E NI of the closed- oop system 

z ( k  + 1) = f ( z ( k ) )  + g(z(k))4(z(k)),  z(0) = 2 0 1  k E N ,  
(7) 

is globally asymptotically stable with the feedback control 
law 4(z) = - f ( &  + Pz(z))-'[L2(5) + P12(z)lT, and the 
performance functional (2), with 

Ll(5) = dTb)(R2 + P2(5))4(2) - V ( f ( z ) )  + V ( z ) ,  (8) 
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is minimized in the sense that 

Finally, J ( z0 ,  $!)(z(.))) = V(zo), for all 20 E R". 

3. Optimal Block Backstepping Controllers 

with nonlinear input subsystems of the form 
In this section we consider nonlinear cascade systems 

z(k  + 1) = f (z(k))  + g(z(k))y(k), 4 0 )  = 20, (10) 
2 ( k  + 1) = f ( i ( k ) )  + g(? (k ) )U(k ) ,  2(0)  = PO, (11) 

(12) y(k) = h(?(k))  + J ( 2 ( k ) ) U ( k ) ,  

where k E N, 2 E RQ, u ,y  E R", f : Rq + Rq, g : 
Rq -+ RQxm,  h : Rq -+ R", and J : RQ + EXWmxm such 
that f ( 0 )  = 0 and h(0) = 0. Here, we consider the case in 
which the nonlinear input subsystem (11), (12 is feedback 

Rq 4 R such that V , ( O )  = 0 and 
strictly passive with positive definite storage i unction V ,  : 

K ( f ( 2 )  + P ( ~ ) u )  = V,(f(i)) + P 1 2 ( 2 ) u + ~ ~ P 2 ( 2 ) ~ ,  (13) 

where $12 : Rq -+ Rlxm and P2 : RQ -+ Pmxm. Specif- 
ically, we assume there exist functions k : RQ -+ R", 
I : Rq -+ RP, and W : Rq -+ RPx" such that l (0)  = 0, 
k ( 0 )  = 0, 

0 > K ( f ( 2 )  + 3(2)k(2) )  - K(2) + lT(2)1(2), 2 # 0, (14) 

0 = p;(2) + WT(2)Z(2) - (h(2)  + J ( i ) k ( 2 ) )  

0 = 9 ( 2 )  + WT(2)W(2) - ( J ( 2 )  + JT(2)). 

(15) 

(16) 

+ P 2  ( 2 )  I C ( ? ) ,  

Theorem 3.1. Consider the cascade system (10)-(12) 
with performance functional 

M 

J(z0, 2 0 ,  U ( - ) )  [ L l ( z ( k ) , w )  
k=O 

+ Z 2 ( z ( k ) ,  Z ( k ) ) u ( k )  + UT(k)R2.(k)] , (17) 

where ( z ( k ) , ! t ( k ) ) ,  k E N, solves (lo),  (11). Assume that 
the input subsystem (ll), (12) is feedback strictly passive 
and the subsystem (10) has a globally stable equilibrium 
at z ( k )  = 0, k E N, and Lyapunov function K u b ( 2 )  so 
that KUb( f (z ) )  < Kub(z), for all z E R" such that z # 0. 
Furthermore, assume there exist functions : R" x Rq 4 

1Wlxm, P12 : R" + Rlxm,  and P2 : Rn -+ Nmxm such that 

Z 2 ( 0 , 0 )  = 0,  &(0) = 0, 

+YTP2(4Y, 

(18) 
x u b ( f ( 2 )  + g ( z ) Y )  = &b(f(z)) f P 1 2 ( z ) y  (I9) 

p{ PZ(z) + Pz(z)h(f) - 2/42) - (I" + p2(z)J(2)) 

+JT(qr ' ,T , ( z )]}  5 0, (z,?) E R" x R4, (20) 

.&((z ,2) [P;(2)  + 2JT($)F2(2)h(2) + e:(,, 2 )  

where Raa(z,2) e R2+P2(2)+JT(2)P2(z)J(x) and k ( 2 )  
satisfies (14)-(16). Then the solution ( z ( k ) , 2 ( k ) )  = (0,0), 
k E N, of the cascade system (lo),  (11) is globally asymp- 
totically stable with the feedback control law U = &z, ?), 
where 

$(.,a) = -;R;:(z,2)[F;(2) + 2JT(?)P2(z)h(2) 

+LT(z, 2 )  + JT(2)P3.)]. (21) 

Furthermore, for (zo,?~) E R" x Rm 

&o, 20, d(z(*), 2 ( . ) ) )  = V(z0, ZO), (22) 

where V(x,2)  = Vsub(x) + vs(?), and the performance 
functional (17), with 

L 1 ( Z ,  2 )  = JT(z, 2)R2,(z, ?)$(z, 2 )  f K u b ( z )  

- K u b ( f ( z )  f g(z)h(?)) + - &(f (? ) ) ,  (23) 

is minimized in the sense that 

(24) 

Remark 3.1. Assuming det(Im + $P2(z)J(2))  # 0 for 
all (z,2) E R" x RQ, a particular choice of z 2 ( z , 2 )  satis- 
fying conditions (18) and (20) is given by 

L, ( z ,  2 )  = [PZ(z) + P2(z)h(2) - 2k(2)IT 
.(Im + +P2(z)J(2))-TR2,(2,  2 )  - P12(z)J(2) 

- P 1 2  ( 2 )  - 2hT ( 2 )  P2 (z) J ( 2 ) .  (25) 

In this case, 

$(z,2) = k ( 2 )  - +(IWm + $ & ( z ) 4 2 ) ) - l  [P&) 
+ 9 ( z )  (h(2)  + J ( P ) k ( f ) ) ] .  (26) 
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