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Abstract 
In this article, we introduce a robust non-fragile state feedback 
controller which is also optimal with respect to a quadratic per- 
formance index, using Linear Matrix Inequalities (LMIs). The 
uncertainties are assumed to be polytopic, both in the con- 
troller gains and the system dynamics. A numerical example 
is presented to demonstrate the efficiency of this method, and 
the controller turns out to be robust with respect to the un- 
certainties in the plant and the controller. 
Key Words: Non-fragile controller, Linear Matrix Inequali- 
ties, robust stability, Polytopic LDIs. 

1 Introduction 
One of the most active areas of research in linear control sys- 
tems is robust and optimal controller design. For the past 15 
years several researchers have come up with different meth- 
ods that enable the controller to cope with uncertainties in 
the plant dynamics. Some of these methods deal with the so- 
called structured uncertainty, while others deal with unstruc- 
tured uncertainty. A majority of these methods rely on the 
Youla-Kutera Q parameterization of all stabilizing controllers. 
Elegant techniques for minimizing Hz [l], H ,  111, 121 and 
L1 [4] norms of different closed-loop transfer functions have 
been developed using this parameterization. Although these 
methods cope with uncertainty in the plant dynamics, they 
all assume that the controller derived is precise, and exactly 
implemented. Unfortunately, this is not the case in practice. 
The controller implementation is subject to round-off errors in 
numerical computations, in addition to the need of providing 
the practicing engineer with safe-tuning margins. Therefore, 
the design has to be able to tolerate some uncertainty in the 
controller as well as the plant dynamics. Recent results in [6] 
have brought attention to this problem. The authors in [7] 
have come up with a method to deal with the uncertainty in a 

fixed-structure dynamical controller, but have not taken into 
account the uncertainty in the plant dynamics. 

The basic premise of our paper is that one can not achieve 
“resiliency” if robustness is all that is demanded, and as mo- 
tivated by [6] and discussed in [7], there exists a trade-off be- 
tween the system’s ability to tolerating both. The numerical 
examples in [6] suggest that if the only uncertainty is in the 
plant, all of the available margins will be used, making the 
closed-loop system extremely fragile with respect to the other 
type of uncertainties. Since designing a dynamical controller as 
in [7] for the case where both system and controller are uncer- 
tain makes the problem very complicated, we consider in this 
paper the design of robust, yet resilient static state feedback 
controllers. 

The structure of this paper is as follows. First, the uncer- 
tain plant is described by a set of Linear Differential Inclusions 
(LDIs) [3] in section 2. We consider the robust stability and 
performance of state feedback controllers with polytopic uncer- 
tainty in the controller gains in sections 3 and 4 respectively. 
A numerical example is presented in section 5 and robustness 
of the controller with respect to parametric uncertainties in 
plant and controller gains is demonstrated. Further extensions 
and our conclusions are discussed in section 6 

2 Polytopic Linear Differential 
Inclusions (LDIs) 

A linear differential inclusion (LDI) is given by 

i E Rx (1) 

where R is a subset of Rn . The LDI in (1) may for example 
describe a family of linear time-varying systems. In this case, 
every trajectory of the LDI satisfies 

i = A ( t )  z ( t )  
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When R is a polytope, the LDI is called polytopic or PLDI, that 
is, A( t )  E Co(A1, Az ,  . . . , A T }  which means that we can write 
A( t )  as a convex combination of the vertices of the polytope 
as follows 

A( t ,x )=a l ( t , x )A l  + a z ( t j ~ ) A ~  +...+ ar(tr2)Ar ( 2 )  

where ( A I , .  . . , A r }  are known matrices and ( ~ 1 , .  . . , aT are 
positive scalars which satisfy EL1 a;(t,z) = 1. Using a tech- 
nique known as global linearization [3], we can use PLDIs to 
study properties of nonlinear time varying systems. In fact, 
consider the system 

?=f(t, x ,  U )  (3) 

If the Jacobian of the system matrix A ( t , z )  = 2 lies in the 
convex hull defined in ( : 2 ) ,  then every trajectory of the nonlin- 
ear system is also a trajectory of the LDI defined by R (See [3] 
for more details). 

3 Robust Stability 
In this section, we discuss the robust stability problem. Using 
the discussion in the prlevious section, let the dynamics of the 
uncertain system be defined as follows 

P 

3 = 1; ai ( t ,x ) (Aix  + Biu) (4) 
i=l 

where, x( t )  E Rn, u ( t )  E R" , Ai E R n x n  , Bi E Rnxn 
r 

a i ( t , x )  = 1, and a i ( t , x )  > 0 , Vi E (1 , .  . . , r }  
i=l 
For simplicity, we assume that the state is available for mea- 
surement and feedback. Using a similar form of polytopic un- 
certainty for the controller, the control input can be written as 
the following, 

( 5 )  

T 

&(t,  z) > 0 V j  E ( 1 , .  . . , r } ,  and 

in (4) with ( 5 ) ,  and keeping in mind that 

closed-loop system can ;be written as 

b j ( t ,  z) = 1. Replacing U 

j=1 
T 

a,(t ,z)  = 1, the 
i=l 

T T  

j=1 i=l 

The following theorem then provides sufficient conditions for 
the stability of the closed-loop system. 
Theorem 1 : The closed loop system (6) is globally asymp- 
totically stable if there exists a common positive definite matrix 
P that satisfies the following Lyapunov inequalities : 

( A ;  - B;Kj)TP + )''(A; - B;Kj)  < 0 i , j  = 1 , .  . . , r  (7) 
I 

The proof is easily obtained by multiplying inequalities in (7) 

by aipj. Pre-multiplying and post-multiplying the inequalities 
in (7) by Y = P-' ,  and introducing Xi = K i Y ,  we can write 
the inequalities (7) as the following LMIs 

(8) YAT + AiY - Mij - M: < 0 i , j  = 1, .  . . ,r 

where Mij can be defined as follows: 

(9) 

(10) 

M. .  - B . X .  v -  I 3  

For later reference, we define 

N ~ ~ = Y A ?  + A ~ Y  - M . .  - MT 

If the LMI's (10) are feasible, we can obtain the values for Ki 
and P as, 

a3 

p=y-' 
K ~ = x ~ Y - ~  (11) i = 1 , .  . . ,r 

4 Robust Performance 
In this section we try to achieve a certain level of performance 
for the uncertain system ( 6 )  using a guaranteed-cost approach 
[5]. It is a well known result from LQR theory that the problem 
of minimizing the cost function 

J = l m ( x T Q x  + uTRu)dt  (12) 

reduces to finding a positive definite solution P > 0 of the 
following Lyapunov equation: 

( A  - B K ) T P  + P ( A  - B K )  + Q + K T R K  = 0 (13) 

where Q L 0 and R > 0. We can write the minimum cost of 
J as [5]: 

min{ J }  = z ( O ) ~ P X ( O )  

If we write (13) as a matrix inequality instead of an equality, 
the solution of the inequality will be an upper bound on the 
performance measure J ,  and we can reach min{J} by minimiz- 
ing that upper bound. While this result holds for a single LTI 
system, we can extend it to the case of equation ( 6 ) .  To avoid 
the dependency of the cost function of the system on initial 
conditions of ( 6 ) ,  we assume the initial conditions randomized 
with zero mean and identity covariance, i.e., 

IE{x(O)} = 0 

n3(x(O)z(O)T} = I (14) 
Our objective is to minimize the expected value of the perfor- 
mance index J with respect to all possible initial conditions 
with zero mean and covariance equal to the identity. It can be 
shown [5, 81 that we can write the upper bound on the perfor- 
mance objective as: J = t r (P)  where tr denotes the trace, and 
where P satisfies the following Lyapunov inequalities: 

o > ( A ~  - B ; K ~ ) ~ P  + P ( A ~  - B ~ K ~ )  + Q 
7. +CKTRK~ i , j = ~  ,..., r 

i=l 
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This follows from the fact that [8] 

T r P (c a , K , ) R ( z  a Z K z T )  < K T R K  (16) 
2=1 2=1 1=1 

Using the same change of variables as in (ll), and by using the 
LMI lemma [5], we can write the Lyapunov inequalities (15) 
as the following LMI's: 

where NzJ is defined in (10). To obtain the least possible 
upper bound provable by a quadratic Lyapunov function, we 
have the following optimization problem 

FzTF- ) 
Subject To: LMIs in (17) 

This is a convex optimization problem which can be solved 
in polynomial time [lo] using one of the available LMI 
toolboxes. To make it possible to use MATLAB @ LMI Toolbox, 
we introduce an artificial variable 2 as an upper bound on 
Y - l ,  and minimize t r ( 2 )  instead, i.e, we recast the problem 
in the following form: 

Min t T ( Z )  
Subject To LMIs in(17), and 

~~ ~ ~~ 

If the above LMIs are feasible, we can calculate the con- 
troller gains as 

K; = xiy-1 

and U as 

r 

U = - C & ( t , z ) K p  
2 = 1  

i.e., we can write U as any convex combination of controller 
gains K;s. We demonstrate a numerical example in the next 
section. 

5 Numerical Examples 
To illustrate this design approach, consider the problem of bal- 
ancing an inverted pendulum on a cart. The equations of mo- 
tion for the pendulum are [13] 

21 =x2 

. gsin(a1) - amlxi sin(2z1)/2 - acos(x1)u 
x2= 

41/3 - am1 cOs2(x1) 

where 21 denotes the angle of the pendulum (in radians) from 
the vertical axis, 2 2  is the angular velocity of the pendulum, 
g = 9.8 m/s2 is the gravity constant, m is the mass of the 
pendulum, M is the mass of the cart, 21 is the length of the 
pendulum, and U is the force applied to the cart. The following 
numerical values were used in the simulation: a = & ,.m = 
2kg,M = 8.0kg,21 = 1.0m. We approximate the nonlinear 
equation by a Polytopic LDI (PLDI) defined by the following 
two vertices 

4 2 )  E Co{Ai, 4 ) ;  B(z )  E CO{&, B2) 

0 0 

@=cos( 80' ) 
C=[l 01 

we choose the following values for Q and R 

R=0.1 (20) 

Note that (AI, B1,C) and (A2,B2, C) are the linearizations 
of the system equation around the points 0 and 80°, i.e., 
cos(x1) is approximated by p in A2 and Bz, sin(z1) is 
approximated by 2 1  and &z1 at 0 and 80' in Ai and A2 
respectively. The system is not controllable at ~ / 2 .  As it was 
mentioned before, we can let U be any convex combination of 
controller gains, as long a s  the closed-loop LDI approximates 
the closed loop nonlinear system. One such choice can be 

U = -  (0.4K1 + .6K2)z (21) 
Simulations indicate that the above control law can balance 
the pendulum for initial conditions between [-80°, 80'1. The 
initial conditions response for an angle of 80' are plotted in 
figures 1 and 2. In figure 3, we plot the control action u.To 
illustrate the robustness of the controller, we increased the 
cart mass by 30%, and the pole length by 40%. Results are 
plotted in figures 4 and 5 . It is worthwhile to note that we can 

linearization techniques, but these controllers are usually very 
complicated. One example of such controllers is as follows [2] 

design nonlinear controllers for the plant based on extended 

u=k(x1,22) 
41elez 

h[sec(el) + tan(xl)] =-- tan(xl) - - 9 
a 3a 

+elezml sin(x1) 
+(el  + e2122 41 

a 
[T sec(z1) - am1 cos(xl)] 
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Figure 1: Initial condition Response of the Angle. 

4 0  -zob / 

- j z0 t  v 
Figure 2: Initial condition Response of Angular Velocity. 

where e l ,  e2 are desired closed loop eigenvalues. Note that 
here we don't have any measure for optimality. Instead, By 
linearizing the dynamics of the system for the angles greater 
than n/2 and also close to T ,  we can balance the pendulum at 
any initial condition while feedback linearization works only in 
the [ -n/2,  n/2] interval [13]. 

6 Conclusion 
The purpose of this nol,e was to present a simple solution to the 
problem of non-fragile controller design, without losing the ro- 
bustness with respect to  uncertainties in the plant model. The 
next step would be to assume a dynamic observer/controller 
system and to assume the same form of uncertainty for the 
observer gains. Using the separation principle proven in [9], 
we can design the observer and controller separately, and we 
still end up with LMIs. 
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Figure 3: Control Action. 

Figure 4: Angle Response with 30% change in cart mass and 
40% in pole length. 
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Figure 5: Angular velocity with 30% change in cart mass and 
40% in pole length. 
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