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Abstract 

In this paper we consider the static output feedback, 
finite-time disturbance rejection problem for linear sys- 
tems with time-varying norm-bounded uncertainties. 
The first result provided in the paper is a sufficient con- 
dition for finite-time state feedback disturbance rejection 
in the presence of constant disturbances. This condition 
requires the solution of an LMI. Then we consider the 
more general output feedback case, which is shown to 
be reducible to the solution of an optimization problem 
involving Bilinear Matrix Inequalities. Finally we deal 
with the case in which the disturbance is time-varying 
and generated by a linear system. 

1 Introduction 

In recent years many results have been published on 
the robust stability problem for linear systems (see for 
example the reprint volumes [5] and [SI). The work of 
control scientists and engineers has mainly focused on 
robust Lyapunov Stability; as it is well known, Lyapunov 
stability deals with the steady-state behavior of linear 
systems, because it looks at the asymptotic pattern of 
system trajectories. 

In many cases, however, we are more interested in what 
happens over a finite-time interval rather than asymp- 
totically. This is the case, for instance, when we want 
to control the state trajectory from an initial point to 
a final point in a prescribed time interval. Two differ- 
ent problems can arise: what happens if we have some 
initial conditions different from zero? And what hap- 
pens if, in addition to some initial conditions, we also 
have some disturbances acting on the system? To ad- 
dress the former problem, in [l] we used the concept 
of Finite-Time Stability [4]. In this paper we general- 
ize this idea, introducing in Section 2 the concept of 
Finite-Time Boundedness. 
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These finite-time properties are distinct and indepen- 
dent from their asymptotic counterparts: for instance 
a system which is finite-time stable could be Lyapunov 
unstable, whereas a Lyapunov stable system could be 
finite-time unstable if its state exceeds the prescribed 
bounds during the transient period. 

The first result provided in this paper (Section 3) is 
a sufficient condition for state feedback finite-time dis- 
turbance rejection in presence of constant disturbances. 
This condition reduces to an LMI Problem [7]. This 
result is generalized in Section 4 to solve the static 
output feedback (SOF) case. However the SOF prob- 
lem requires the solution of Bilinear Matrix Inequalities 
(BMIs). Most BMIs algorithms are guaranteed to con- 
verge but not necessarily to the global optimum (like 
LMIs based problems) and the solution is dependent 
on the initial data; however there exist efficient local 
minima algorithms which work well in many situations 
(see [9], [lo] and the bibliography therein). 

The last result of the paper, provided in Section 5, is a 
sufficient condition for finite-time disturbance rejection 
in presence of time-varying disturbances generated by a 
zero-input LTI system. 

2 Problem Statement and Preliminaries 

In this paper we consider the following linear system 
subject to time-varying uncertainties and to exogenous 
disturbances 

We shall assume the following. 
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The uncertain part in (la) is in the so-called struc- 
tured, one block form 

[ AA(t) A B ( t )  I = F A ( t )  [ E l  Ez ] 

where F E Rnx', El E Etaxn and E2 E EtSXm 
and the unknown, real matrix-valued function A 
belongs to the class 

2) := { A  : [ O , + o o )  e RrXJI A is Lebesgue 
measurable, A ( t ) T A ( t )  5 I } .  

The exogenous disturbance w is constant and sat- 
isfies 

wTw 5 d (2) 
where d 2 0. 

Assumption A2 will be removed in Section 5, where we 
shall consider the more general case of disturbances gen- 
erated by a LTI system. 

Concerning system (I) ,  we consider the following output 
feedback controller 

U = Icy (3) 
with IC E R m x p .  

The aim of this paper is to find some sufficient condi- 
tions which guarantee that the closed loop system given 
by the interconnection of (1) with (3) exhibits a given 
level of disturbance rejection over a finite-time interval. 
The general idea of finite-time boundedness concerns the 
boundedness of the state of a system over a finite time 
interval given both some initial conditions and an exter- 
nal disturbance acting on the system. This concept can 
be formalized through the following definition, which is 
an extension of the one in [l]. 

Definition 1 Let W be a class of disturbance signals. 
The time-varying linear system 

i ( t )  = A(t )z ( t )  + G(t)w t E [ O , T ]  (4) 

subject to an exogenous disturbance w E W ,  is said 
to be Finite-Time Bounded (FTB) with respect to the 
given quadruple ( c l ,  cg, d ,  T ) ,  with cg > c1 if 

Z T ( 0 ) Z ( O )  5 Cl * zT( t ) z ( t )  < c2 vt E [O,T],Vw E w 

On the basis of the above considerations the first aim of 
this paper is the solution of the following problem. 

Static Output Feedback Problem (SOFP) Given 
system (1) and the quadruple (q, c2, d , T ) ,  find an out- 
put feedback controller in the form (3) such that the 
closed loop system given by the interconnection of (1) 

with (3) is FTB with respect to ( c l , c g , d , T )  for all 
A E 2). W 

A particular case of SOFP is the one in which the whole 
state of system (1) is available for feedback (C = I ) ;  we 
will denote the related problem by SFP. 

The following lemmastates a sufficient condition for the 
FTB of a system in the form 

i ( t )  = ( A  + F A ( t ) E 1 )  z ( t )  + GW (5) 

which is fundamental to prove the main results of the 
following sections. 

Lemma 1 System (5) is FTB with respect 
to  (c1 czl d,  T )  f o r  all A E V if there exast a positive 
scalar a and two symmetric positive definite matrices 
Q 1  E Etnxn and Q 2  E Etqxq such that 
( AQI + QIAT + FFT - a ~ l  + $ G Q ~ G T  ",;) - < 0 (sa) EiQi 

Proof: Let V(z., w) = xTQF1z  + wTQilw and de- 
note, as usual, by V the derivative of V along the solu- 
tion of system (5). Suppose that the condition 

W), w) < aV(z( t ) ,  w) (7) 

holds for all t E [O,T] and all w E W .  We will first 
demonstrate that conditions (7) and (6b) imply that 
system (5) is FTB with respect to ( c l , c 2 , d , T ) .  Then, 
to conclude the proof, we will show that condition (7) 
is implied by (6a). 

Our first claim is that conditions (7) and (6b) im- 
ply the FT Boundedness of system (5) with respect to 
(c1, cg, d ,  T ) .  Introducing the matrix 

P =  (Qil $1) 
and the vector 

z =  (:) 
it is easy to show that from (7) it follows that 

z T ( t ) P z ( t )  < zT(0)Pz(O)eat  (8) 

Now we have 

z T ( t ) P z ( t )  2 

5 
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Putting together (8) and (9) we have 

z T ( t ) x ( t )  < cond ( 'il 41) (c1 + d)eaT 

= cond ( &ol :2) (c1 + d)eaT (10) 

From (10) it readily follows that (6b) implies, for all 
t E [O,T], z*( t )z( t )  < cg;  from this last consideration 
our first claim follows. 

Now we need to prove that condition (6a) implies (7). 

Assume that there exist CY > 0 and two symmetric ma- 
trices Q1 > 0 and Q2 > 0 such that inequality (6a) is 
satisfied. Using the following inequality 

F F ~  + Q ~ E T E ~ Q ~  2 F F ~  + Q ~ E T A ~ A E ~ Q ~  2 
FAE1&1+ QIETATFT (11) 

and letting A := (A + F A & ) ,  from (sa) we have 

(12) 
1 

AQl + &laT - Q Q ~  + -GQ2GT < 0 
ff 

Pre and post-multiplying (12) by QF' we obtain the 
equivalent condition 

QIIA+ATQ; '  -CY&;' + 'QL1GQ2GTQ;' Q < 0 (13) 

Condition (13) is equivalent to 

which, in turn is equivalent to (7). Therefore the proof 
follows. 

Remark 1 Note that there exists a trade-off between 
satisfying (sa) and (6b), since increasing Q will guaran- 
tee the negative definiteness of the LMI (6a) but will 
tighten the bound in (6b). I 

3 The State Feedback Case 

In this section we consider the case in which the whole 
state of system (1) is available for feedback, namely 

i ( t )  = [A + F A ( t ) E i ]  ~ ( t )  + [B + FA(t)Ez]  u ( t )  + 
Gw (144 

y = x  (14b) 

For this system we shall provide a sufficient condition 
for the solution of the SFP by means of a controller in 
the form 

U = K X  (15) 

with I( E Etnxm. These conditions are then turned 
into an optimization problem involving Linear Matrix 
Inequalities (LMIs) [3]. 

The closed loop system given by the connection of (14) 
with (15) has the expression 

i ( t )  = [A  + BK + F A ( t ) ( E 1 +  E2K)] ~ ( t )  + GW (16) 

Theorem 1 The SFP admits a solution if there ex- 
ist a positive scalar a, two symmetric positive definite 
matrices Q1 E Etnxn and Q2 E R q X q  and a matrix 
L E EtmXn such that 

AQi + QiAT + B L +  LTBT+ 
FFT - aQ1+ iGQ2GT 

(EiQi  + E z L ) ~  

EiQi  + E2L -I 

In this case a controller which solves the SFP is given 
by K = LQ,'. 

Proof: The proof easily follows from Lemma 1, re- 
placing A with ( A  + B K )  and El with ( E l  + E2K)  
(compare (5) with (16)), and letting, according to [8], 
L = K Q l .  I 
For a given Q, the feasibility of the conditions stated 
in Theorem 1 can be turned into an LMIs based o p  
timization problem. Indeed these conditions can be 
equivalently restated as the following Eigenvalue Prob- 
lem (EVP) [3]. 

Eigenvalue Problem 
Given system (14) and the quadruple ( c ~ , c z , d , T ) ,  f i x  
Q > 0 and solve 

min y 
L,C?i,Qa 

s.t .  

If y < letting K = LQT1, system (16) is 
FTB with respect to ( c l , c 2 , d , T ) .  I 

Example 1 Let us consider system (14) with 

F = (  -1 1 -J 0 E l = ( ! L  2 1) 
E:!= ( a > ,  G =  (;) 
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Moreover let c1 = 1, c2 = 100 and d = 1. For the given 
triplet (c1, c2, d ) ,  we found the state feedback controller 
which maximizes the value of T for which the closed 

matrix C 

C = ( - 1  1) 

We found the output feedback controller maximizing the 
value of for which the closed loop system is FTB with 
respect to (c1, c2, d,  T ) .  We obtained T,,, = 0.29 for 
a = 5.2; the optimal controller is 

loop system is FTB with respect to (c l ,cz ,d ,T) .  This 
problem has been solved with the aid of the LMI Tool- 
box [7], finding Tmaz = 0.32 for a = 4.8; the optimal 
controller is 

IC = (0.32 2.95) . K = -0.88. ' As expected, the value of TmaZ is smaller than in the 
case of the state feedback. ' 

4 The Output Feedback Case 

In this section we go back to the original SOFP con- 
cerning system (1). 

5 Disturbance Rejection with Time-Varying 
Disturbances 

In this section we consider the finite-time disturbance 
rejection problem in the presence of time-varying dis- 
turbances modelled as the output of a zero-input LTI 
system; to this end let US consider the system 

Theorem 2 The SOFp admits a solution if there ex- 
ist a positive scalar a, two symmetric positive definite 
matrices Q1 E Rnxn and Q2 E IRQxq and a matrix -~ 
IC E Rmxp such that 

i ( t )  = ( A  + F A ( t ) E ) z ( t )  + Gw( t )  (18a) 
tb(t) = A,w(t) wT(0)w(O) 5 d (18b) < 0 (17a) 

where A, may be unstable. 

ACLQI + QiAT,, + FFT-  
~ Q I  + $GQ2GT 

QiBT 

( EQi -I 

cond ( &ol 12> < s e - a T  (17b) Lemma 2 System (18) is FTB with respect to 
(c1, c2, d,  T )  for all A E 2) i f  there exist a nonnegative 
scalar a and two symmetric positive definite matrices where 

ACL = (A+BICC)  Q1 E lRnxn and Q2 E R q X q  such that 
AQi + QiAT+ GQ2 I3 = ( E l + E 2 K C )  

Proof: The proof immediately follows from the ex- -I 
pression of the closed loop system and from Lemma 1. 

Unfortunately, the feasibility of the conditions stated in 
Theorem 2 cannot be directly reduced to LMIs based 
problems because of the product between the optimiza- 
tion variables; such a problem cannot be overcome via 
a suitable change of variables, as in the state feedback 
case. Indeed condition (17a) is a Bilinear Matrix In- 
equality [lo]. To solve this problem we propose a heuris- 
tic procedure which consists in alternating the optimiza- 
tion over K ,  with fixed Q1 and Q2, with the optimiza- 
tion over Q1 and Q2, with fixed X (see also [9]). In this 
way each optimization becomes an LMI problem; this 
procedure is guaranteed to converge but not necessarily 
to the global minimum and the solution is dependent 
on the initial data. With this procedure we solved the 
following example. 

Example 2 Let us reconsider the example we intro- 
duced in Section 4, this time with the following output 

Proof: As usual we pick the Lyapunov functions 
V(z ,w)  = zTQL1z + wTQT1w and assume that the 
condition 

V ( z ( t ) ,  4)) < aV(z( t ) ,  4 t ) )  (20) 

is satisfied for all t E [0, TI 

As in the proof of Lemma 1, conditions (19b) and (20) 
imply the statement of the Lemma. We have only to 
prove that condition (19a) implies (20). 

Using the LMI Lemma (see [3]) it is simple to recognize 
that inequality (19a) is equivalent to the following 

bo AQi + QiAT + FFT-  GQ2 

Q 2 4  + A w Q 2  - aQ2 

( aQ1 +Z;I-~EQI 
(21) 
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Now using inequality (11) and letting A := ( A  + F A E )  
we have that (21) implies 

( AQi +:;Cl: - QQI bo GQ2 
Q2Az + AwQ2 - Q Q Z  

(22) 

Pre and post-multiplying (22) by 

(Qil &) 
we obtain the equivalent condition 

&;‘A + ATQ;’ - a&;’ 
G ~ Q ; ~  AZQ,’ + Qq’Aw - C Y Q ~ ’  

Finally we have that the last inequality is equivalent 
to (20). 

Remark 2 If cr = 0, inequality (19b) is independent of 
T. In this case it is easy to show that F T  Boundedness 
implies Quadratic Stability which in turn implies Lya- 
punov Asymptotic Stability for all A E 2) [2]. It is also 
easy to prove that a necessary condition to find a solu- 
tion to (19) for cr = 0 is that A,,, be a Hurwitz matrix. 
W 

Now consider the forced system 

i ( t )  = ( A  + F A ( t ) E i ) z ( t )  + ( B  + FL\(t)E2)u(t)  + 
W t )  (234 

G(t)  = A,w(t)  wT(0)w(O) 5 d .  P3b) 

The following theorem immediately follows from 
Lemma 2; this theorem states a sufficient condition for 
FTB in presence of time-varying disturbances. 

Theorem 3 The SOFP (stated for  system (23a)) ad- 
mits a solution if there exist a nonnegative scalar a,  
two symmetric positive definite matrices &I E IR”’” 
and Qz E RqXq and a matrix I( E Etrnxp such that 

where 

ACL = ( A + B K C )  
E = ( E l + E 2 1 - C )  

6 Concluding Remarks 

In this paper we have considered the finite-time stabi- 
lization problem for a linear system subject to norm 
bounded uncertainties and to unknown disturbances. 
We have provided a sufficient condition for finite-time 
stabilization via state feedback in the presence ‘of con- 
stant disturbances which can be turned into an opti- 
mization problem involving LMIs; then the more general 
static output feedback case has been considered. How- 
ever, in this last case, the solution of the optimization 
problem is constrained by BMIs. Finally the situation 
in which the disturbance is time-varying and generated 
by a zero-input system has been considered. 
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Regarding the solution of the SOFP for system (23a), 
considerations similar to those in Section 4 can be re- 
peated. 
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