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Abstract 

In this paper some fixed-order controllers are designed 
via statistical methods for the Benchmark Problem 
originally presented at the 1990 American Control Con- 
ference. Based on some recent results by the authors, it 
is shown that the statistical approach is a valid method 
to design robust controllers. Two different controllers 
are proposed and their performance are compared with 
controllers with the same structure, designed using dif- 
ferent techniques. 

1 Introduction 

It has recently become clear that many control prob- 
lems are too difficult to admit analytic solutions. New 
results have also emerged to show that the computa- 
tional complexity of some "solved" control problems 
is prohibitive. In order to get around such problems, 
many authors have recently advanced the notion of 
probabilistic methods in control analysis and design. 
In control theory, some of the original (Monte Carlo) 
ideas have already been used, among the others, by Ray 
and Stengel [l], Tempo et al. [2], and by Khargonakar 
and Tikku [3], to solve robust analysis problems while 
Vidyasagar used learning theory to solve robust control 
problems [4], [5]. 

Unfortunately, and as acknowledged by the various au- 
thors, probabilistic methods, while more efficient than 
gridding techniques (which suffer from the curse of di- 
mensionality), still require a large number of samples 
in order to guarantee accurate designs. In [6] ,  we pro- 
posed a new control design algorithm which greatly re- 
duces the required number of plants sampled in order to 
achieve a certain performance level. In the current pa- 
per, we illustrate the use of our algorithm in designing 
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fixed-order robust controllers for the linear benchmark 
problem (see also [7]). 

2 Problem Formulation 

The benchmark problem was originally proposed in [SI. 
The plant consists of a two-mass/spring system with 
non-collocated sensor and actuator. The system can 
be represented in dimensionless state-space form as 
(see [si, [91) 

y = x z + v  
z = x2 

where x1 and x2 are the positions of the masses, c is the 
internal damping between the masses, f is a loop-gain 
uncertainty, U is the control input force, i- is a time 
constant for a first-order delay between the controller 
command U ,  and the actuator response U ,  w is the plant 
disturbance, y is the sensor measurement corrupted by 
the noise U, and z is the output to be controlled. 

Three design problems were proposed in [8]. The most 
demanding one requires: i) Closed-loop stability when 
the parameters ml, m2 and k are uncertain with mean 
value 1; ii) A 15 s settling time for unit disturbance 
impulse for the nominal plant ml = m2 = k = 1; 
iii) The minimization of the control effort and of the 
controller complexity. 

Many controllers were proposed for this problem. They 
are collected and analyzed in [9], where the authors, 
after evaluating the nominal performance, carry out 
a Stochastic Robustness Analysis in order to analyze 
the behavior when the plant parameters change. The 
six uncertain parameters are assumed to be uniform 
independent random variables in the following inter- 
vals: 0.5 < IC < 2, 0.5 < ml < 1.5, 0.5 < m2 < 1.5, 
0 < c < 0.1, 0.9 < f < 1.1 and 0.001 < T < 0.4. We 
shall denote by X E X R6 the vector of these uncer- 
tain parameters x = [ IC ml m2 c f i- 3'. 
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Based on the specifications, our target is to design a 
fixed-structure controller such that: i) The nominal 
plant is stabilized; ii) The 15 s settling time specifica- 
tion is satisfied for the nominal plant; iii) The control 
effort does not exceed a one unit saturation limit in re- 
sponse to a unit w disturbance, for the nominal plant; 
iv) A certain cost function is minimized. This cost 
function accounts for the closed-loop stability and the 
performance in the presence of parameter variations. 

3 Statistical Design of Fixed-Order Controllers 

In this section, using a randomized algorithm which is 
described in detail and proven elsewhere [6], we shall 
design two fixed-order controllers. One of the charac- 
teristics of the algorithm is that the number of plants 
tested depends only on the accuracy and the confidence 
chosen but not on the complexity of the plant nor of 
the controller. 

Denoting by Y E Y IRm the vector of controller co- 
efficients, the two chosen controllers have the following 
structures 

(2) 
a1s2 + a2s + a3 

K2(s7 = 
s3 + b1s2 + b2s + b3 

The coefficients of the controllers are chosen to have 
uniform distributions. For the controller (1) these coef- 
ficients take values in the intervals a0 E [0.5, lo], a1 E 

whereas for the controller (2) they take values in a1 E 
[-2,-0.5], a2 E [-0.3,-0.11, bi E [1,5], b2 E [1,6], 

[-50,501, a2 E [-120,-40], a3 E [-40,-lo], bl E 
[70,170], b2 E [80,160], b3 E [loo, 1401. 

In order to use the randomized algorithm methodology, 
this problem has been reformulated in the following 
way (see also [6], [5]). Let us define a cost function 

W )  = m={$l(Y),$2(Y)) (3) 

where 

0 
1 otherwise 

if all requirements on the nominal plant are met 

and 

$2(Y) = E (C(X7 Y ) )  9 (4) 

where E indicates the expected value with respect to 
X ,  and 

if the random plant is not stabilized 
if both the control limit and the settling time 
specifications are not satisfied 
if either the control limit or the settling time 
specification is not satisfied 
otherwise 
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Our aim is to minimize the cost function (3) over Y .  
What we shall find is a suboptimal solution, a probably 
approximate near minimum of q ( Y )  with confidence 
1 - 6, level a and accuracy E (see [lo]), using the fol- 
lowing Procedure, which was derived in [6]. 

Procedure 

1. Let k = O  

2. Choose n controllers with random uniformly dis- 
tributed coefficients Yl, . . . ,Y, E Y ,  where (we 
indicate by 1.1 the floor operator) 

Evaluate for these controllers the function $1 (4) 
and discard those controllers for which $1 = 1. 
Let fi be the number of the remaining controllers. 

3. Choose m plants generating random parame- 
ters XI, . . . , X ,  E X with uniform distribution, 
where 

4. Evaluate the stopping variable 

where ri are Rademacher random variables, i.e. 
independent identically distributed random vari- 
ables taking values +1 and -1 with probability 
112 each. If y 5 €15, stop. The value of m is 
large enough to guarantee the required probabil- 
ity levels. If y > €15, let k = k + 1 and go back 
to step 3 

5. Choose the controller which minimizes the func- 
tion 

This is the suboptimal controller in the sense de- 
fined above. 

Remark 1 The proposed algorithm consists of two 
distinct parts: the estimate of the expected value in (4), 
which is given with an accuracy E and a confidence 
1 - 612, and the minimization procedure which is car- 
ried out with a confidence 1 - 612 and introduces the 
level a. As it can be seen from the Procedure, the 
number m of samples in X which are needed to achieve 
the estimate of the expected value (4), known as the 



sample complexity, is not known a priori but is itself 
a random variable. The upper bounds for this random 
sample complexity however, are of the same order of 
those that can be found in [4]. 

In both cases of our controllers, the procedure needed 
just one iteration to converge, i.e. k = 0. Therefore, 
for 6 = 0.05, a = 0.005 and E = 0.1, n evaluated to 
736 controllers and m evaluated to 50,753 plants. The 
suboptimal controllers are 

(5) 

(6) 

1 . 1 1 1 0 ~ ~  - 1.7393s - 0.2615 
K1(s) = s2 + 3.6814s + 2.9353 

K2(s )  = s3 + 92.1586~~ + 123.3358s + 131.8229 
31 .9432~~  - 76.6527s - 12.7876 

and the corresponding values of the cost function are 
!Po = 0.2683 for (5) and iP0 = 0.2062 for (6). As ex- 
pected, with a more complex controller we get a better 
result. 

4 Analysis of the Performance 

In this section we shall compare the performance of 
the two controllers (5)-(6) with those of 4 other con- 
trollers analyzed in [9] with the same structure as the 
ones proposed here. The transfer functions of these 4 
controllers can be found in [9]. 

The performance are quantified using a Monte Carlo 
evaluation. According to the distributions of the pa- 
rameters, 20,000 plants (see [9] for the choice of this 
number) are randomly generated and estimates of the 
following three metrics are calculated: 1. PI: Prob- 
ability of instability. This is the probability that a 
randomly generated plant is not stabilized. 2. P T ~ :  
Probability of exceeding the settling time. This is the 
probability that the 15 s settling time specification is 
not satisfied. 3. P,: Probability of exceeding the con- 
trol limit. This is the probability that the actuator 
displacement will exceed a one unit saturation limit in 
response to a unit w disturbance. 

Table 1: Robust Performance 
[ Controller 1 PI 1 PT, I P, I 

I 0.002 I 0.803 I 0.002 I Ki c I 0.041 0.874 1 0.041 
0.125 0.999 I 0.409 

The data for the controllers A, B, C and E are taken from [9] 

The settling time and the control limit specifications 
were considered to be violated also when the controller 
fails to stabilize a plant. As shown in Table 1, the 
two controllers designed with the statistical approach 
exhibit a better behavior in all the three cases. 

5 Conclusions 

In this paper, we have illustrated the use of sequential 
learning algorithms in designing robust controllers for 
linear systems. This approach has been developed in [6] 
and presents a significant extension of the results of [5]. 
The approach is not limited to linear problems, nor to 
the finite-dimensional case as one can apply similar de- 
sign steps to nonlinear systems and to delay-differential 
systems. In addition, discrete-time systems may be 
dealt with in exactly the same fashion. 
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