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Abstract 
In this paper we design a state-feedback 

controller for the nonlinear benchmark problem. 
Our approach relies on the use of Takagi-Sugeno 
fuzzy models to  approximate the nonlinear system. 
Once €he fuzzy model is obtained, we develop a 
guaranteed-cost framework to design the controller 
using Linear Matrix Inequality methods and recently 
obtained relaxed stability conditions. We show that 
our proposed controller will not only stabilize the 
system, but also has satisfactory disturbance atten- 
uation properties. 

1. Introduction 
The nonlinear benchmark problem was intro- 

duced in [14] as a simplified model of a dual- 
spin spacecraft to study the resonance capture phe- 
nomenon. It has since been clarified and proposed as 
a benchmark to  study nonlinear control techniques. 
After simplification, the system is described by the 
non-dimensional equations 

j : =  f(x) + d X ) U  + 4 x ) w  

where E is a nonnegative constant less than one. This 
problem has since been studied and reported on in 

[l, 6, 7,8, 111. In this paper, we introduce a new con- 
trol approach] based on the linearization of the sys- 
tem equations around two different operating points. 
The nonlinear system is then approximated by a con- 
vex combination of these two linear models. This 
way of modeling has recently become quite popular. 
The key point of this modeling approach is that once 
linear models are obtained] linear control methodol- 
ogy can be used to design controllers for each linear 
model. The overall controller for the original non- 
linear system is obtained by aggregating the local 
models. Stability conditions for these systems were 
first given in [lo]. These conditions required the ex- 
istence of a common Lyapunov matrix which would 
simultaneously satisfy a set of Lyapunov Matrix In- 
equalities. It was later shown in [13] that these sta- 
bility conditions can be relaxed and that they can 
be transformed into Linear Matrix Inequalities which 
are efficiently solvable using interior-point convex op- 
timization methods [a] .  Recently, less conservative 
stability conditions were derived for these systems 

In [4], we developed a guaranteed-cost approach 
for design of stabilizing Takagi-Sugeno (T-S from 
now on) controllers which would also minimize an 
upper bound on a quadratic performance measure. 
In this paper, we combine our results from [4] and 
those of [9] to develop a T-S controller for the non- 
linear benchmark problem. Our simulation results 
indicate that the controller will satisfy the required 
design specifications and will also attenuate the ef- 
fect of disturbance. Most of the papers which stud- 
ied the benchmark problem (with the exception of 
[ll]) did not deal with the disturbance rejection is- 
sues directly. Some, such as [7] showed that the effect 
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of disturbance is attenuated by the design. Others, 
such as the passivity designs of [6] are robust with 
respect to LZ disturbances entering at the right place 
into the system. As discussed in [7], and further evi- 
denced by the many approaches to the problem, the 
regulation problem in the absence of disturbance may 
be efficiently solved. The present paper attempts to 
design controllers which will not only stabilize the 
system, but will do so in the face of sinusoidal distur- 
bances and within the limits set forth in the bench- 
mark problem. 

This paper is organized as follows: Section 2 
gives a brief review of T-S fuzzy systems and their 
stability conditions. Section 3 presents a guaranteed- 
cost approach for the design of T-S fuzzy controllers. 
In section 4, we apply our design to the nonlinear 
benchmark problem and present numerical simula- 
tions. Our conclusions are given in section 5. 

2. T-S Fuzzy Stability Conditions 
A dynamic T-S fuzzy model is described by a 

set of fuzzy “IF ... THEN” rules with fuzzy sets 
in the antecedents and dynamic LTI systems in the 
consequents. A generic T-S plant rule can b_e writ- 
t,en as follows: ith Plant Rule: IF x:l(t) is Mil and 
..., xn(t)  is Min THEN X = Aix + B ~ u ,  where 
x E RnX1 is the state vector, i = {l, . . . , r},  r 
is the number of rules, are input fuzzy sets, 
Ai E RnXn,Bi  E RnXm, and U E ELmx1. Using 
singleton fuzzifier, max-product inference and cen- 
ter average defuzzifier, we can write the aggregated 
fuzzy model as 

where wi is defined as 

n 

wi ( X I  = n pij  ( x j )  (3) 
j=1 

where pij is the membership function of j t h  fuzzy 
set in the i th rule. Defining 

(4) 

we can write (2) as 

T 

X = C N ~ ( X ) ( A ~ X  + B ~ u )  ( 5 )  
i=l 

where ai > 0 and x:=’=,ai = 1. Using the same 
method for generating T-S fuzzy rules for the con- 
troller, we have i th Controller Rule: IF X I  ( t )  is Mil 
and . . . x,(t) is Min THEN U = -Kix. The overall 
controller is given by 

r 

U = - a j (x )K jx  
j=1 

Replacing (6) in (5), we obtain the following equation 
for the closed loop system: 

r r  

i=l j=1 

We the have the following theorem for closed-loop 
stability 

Theorem 1 [13]:The closed-loop fuzzy system (7) is 
globally asymptotically stable if there exist a common, 
positive-definite matrix P which satisfies the follow- 
ing Lyapunov inequalities: 

(Ai - BiKi)TP + P(Ai - BiKi) < 0 1 5 i 5 r 
G ; P + P G ~ ~  < o j < i l r  

P > O  (8) 

where Gij is defined as 

Gij = Ai - BiKj + Aj - BjKi (9) 

Although the conditions given in the above theorem 
guarantee stability, they can be quite conservative. 
The reason is that these conditions are independent 
of the shape of membership functions, and are the 
same whether the ai’s are membership functions or 
uncertain parameters. Recently these stability con- 
ditions have been relaxed in [9]. The relaxed stability 
conditions are given in the following theorem. 

Theorem 2 [9]:The closed-loop fuzzy system (7) is 
globally asymptotically stable, if there exist a com- 
mon, positive-definite matrix P ,  and a positive- 
semidefinite matrix U which satisfy the following 
Lyapunov inequalities: 

(Ai - BiKi)TP + P(Ai - BiKi) + (S - l ) U  < 0 
G ; P + P G ~ ~ - U  < o 

U 2 0; P ( W  
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where i = l,...,r, j < i 5 r ,  s is the maximum 
number of rules fired at every instance of time, and 
Gij is defined as in (9). 

These stability conditions are less conservative when 
the membership functions overlap. For example, in 
the most common case of 50% overlap between the 
membership functions, i.e., two rules being fired for 
all times, s is equal to 2. Pre-multiplying and post- 
multiplying both sides of the inequalities in (10) by 
P-' and using the following change of variables 

Y = P-l; X i  = KiY; Z = YUY (11) 

we obtain the following LMIs [9]: 

YAT + AiY - BiXi - XTBT + ( s  - l )Z  < 0 
Y ( A i  + Aj )T  + (Ai + A j ) Y  - Mij - MZ - Z < 0 

Y > 0;  

where i = 1,. . . , r ,  j < i 5 r and Mij is defined as: 

Mij = BiXj + BjXi (12) 

The feasibility of the above LMIs guarantees stabil- 
ity, but in most practical problems, stability is just 
a primary goal and performance is also usually re- 
quired. In the next section, we develop a guaranteed- 
cost design for T-S fuzzy systems [4]. 

3. Guaranteed-Cost Design 
It is a well known result that the problem of min- 

imizing an upper bound on the linear quadratic per- 
formance measure 

J = l c u ( z ( t ) T Q z ( t )  + u(t)TRu(t))dt  (13) 

subject to the LTI system 

can be transformed into the following optimization 
problem, subject to a set of Matrix Inequalities [2]: 

minimize: xoTPxo 
Subject to: 

o > ( A  - B K ) ~ P  + P ( A  - B K )  + Q + K%K 

O < P  (15) 

The above optimization problem can then be trans- 
formed into a convex optimization problem using the 
first two change of variables in (11). To avoid the 
dependency of the minimum cost on initial condi- 
tions, we assume that initial conditions are random- 
ized with zero mean and a covariance equal to the 
identity, therefore we minimize the expected value of 
the cost function J with respect to all possible initial 
conditions zo with [3]: IE{xox:} = I; and IE{xo} = 0. 
Therefore, our optimization problem will be trans- 
formed to a trace minimization problem subject to 
the matrix inequalities in (15). This result can be 
extended to nonlinear systems approximated by T-S 
fuzzy models as follows [4]. 

Theorem 3 Consider the closed-loop fuzzy system 
(7). We have the following bound on the performance 
objective J 

where P is the solution of the following inequalities 

Q + (Ai - BiKJTP + P(Ai - BiKi) 
r 

+ ( s - - I ) u + ~ . K T R K ~ < o  i = ~ , . . . , r  
i= 1 

r 

Q + G:P+PGi j -U+xK, 'RKi<O (17) 
i=l 

where j < i 5 r and u is defined in equation (6), and 
Mij is the same as an (12). 

The proof can be easily obtained by combining the 
proof given in [4] with the relaxed stability conditions 
in [9]. The key point in the proof is to note that 

r r r 

i=l i=l i=l 

Using the change of variables in (11) and utilizing 
the LMI lemma [a, 31, the inequalities in (17) can 
be transformed into the LMIs in [4] To obtain the 
least possible upper-bound using a quadratic Lya- 
punov function, we have the following optimization 
problem 
Min tr (Y- ' )  
Subject To: LMIs in [4] 
This is a convex optimization problem which can 
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be solved in polynomial time [?] using any of the 
available LMI toolboxes. To make it possible to use 
Matlab's LMI Toolbox, we introduce an artificial 
variable 2, which is an upper bound on Y-l, and 
minimize t r ( 2 )  instead, i.e, we recast the problem 
in the following form 

Min t r ( 2 )  
Subject To LMIs in [4], and 

(19) 

If the above LMIs are feasible, we can calculate the 
controller gains as K~ = ~ ~ y - 1 .  The global con- 
troller can then be obtained as in ( 6 ) .  

Figure 1: Membership functions for the two fuzzy sets 
close t o  zero and close to f 7 r l 2 .  

4. Control of the Benchmark Problem 
In this section, we apply the results obtained so 

far to the nonlinear benchmark problem (1). We lin- 
earize the equations of the benchmark system around 
two points, 0" and 80". The linearized model around 
zero is obtained by finding the Jacobian of the sys- 
tem, while for the second point, cosx is approxi- 
mated with ,f3 = COSSO". Simulations are performed 
for E = 0.5. We obtain the following T-S fuzzy model 
;for the svstem 

Simulation results indicate that our control method 
can stabilize the system for initial conditions wit 2 3  

up to  80" even in the presence of disturbances. The 
system is simulated in the presence of the sinusoidal 
disturbance of sin20t. The results are depicted in 
Figure 2, and clearly show that the disturbance is 
attenuated in magnitude. The control torque in Fig- 
ure 3 is within the limits in the statement of the 
benchmark problem. 

5. Conclusions 
In this paper, we presented a new approach to 

control the nonlinear benchmark problem using a 
T-S modeling methodology and LMIs. The results 
turned out to be quite satisfactory and in the ranges 
set forth for the benchmark system. Note that the 

Plant Rule (1): If x3 is close to  zero Then 

Plant Rule (2): If 2 3  is close to  f7r/2 Then 

where close to  zero and close to f7r/2 are the input 
fuzzy sets defined by the membership functions 

.i: = Alx + B ~ u  

.i: = A ~ x  + B ~ u  

2 2 approach is quite general and may be applied to other 
nonlinear systems by using more rules and different pi = 1 - -1231 p2 = - 1 ~ 3 1  

7r 7r - 
linearization points. Further research can be done 
in this area by trying to design dynamic T-S out- 
put feedback controllers using an asymptotic T-S ob- 

respectively, ( see Figure l), and A I ,  Az, B1, Bz are 
given as follows 

server [5]. 
r o  1 0 0 1  r o i  
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Figure 3: Control action in the presence of disturbance. 
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