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Abstract 

This paper addresses conditions for characterizing static 
output feedback controllers including delays for some 
proper (finitedimensional) transfer functions. The interest 
of such study is in controlling systems which can not be sta- 
biliied by the classical, nondelayed static output feedback, 
and its difficulty lies in computing delay intervals guarantee- 
ing closed-loop stability, since stability switches/reversals 
may occur for the same (matrix) gain if the delay is seen 
as a ‘free’ (design) parameter. The derived conditions are 
expressed in terms of some appropriate matrix pencils or 
MIMO Nyquist tests. Illustrative examples are also pre 
sented. 
Keywords: Stability, deiay switches/reversals, matrix 
pencils, Nyquist. 

1 Introduction and Problem Formulation 

In this paper, we consider mainly the following: 
Problem 1: Given a strictly proper tmwfer function 
H ( s )  E Cpxm ( p , m  2 1) with a state-space represen- 
tation (U E R”, g E RP, 5 E R”): 

A s ( t )  + B u ( t )  , 

find all pairs ( K ,  T )  E RmxP x R+ such that the static 
dehyed output feedback u(t) = K y ( t  - 7 )  stabilizes the 
system (1.1).  

It is clear that for T s 0, we have the ‘classical’ 
static output feedback problem, which has been thor- 
oughly studied (See for example [31] and the refer- 
e n w  therein).We are interested in introducing a de- 
lay in the control law of the class of systems (1.1) for 
which the static output stabilization fails. It would 
seem that the class of the transfer functions which are 
closed-loop asymptotically stable may become larger if 
one uses infinite-dimensional controllers, for stabilizing 
finite-dimensional systems. 

In practice, the delay effects on the system’s phase may 
be sufficient in some cases to guarantee the stability of 
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the control scheme in closed-loop (see, for example, in 
the stabilization of some oscillatory systems). Indeed, 
consider the following SISO system: 

1 
y ( t )  = H ( s )  - u ( t ) ,  H ( s )  = - 

s 2 + w i ’  

with WO > 0. It is clear that any feedback u ( t )  = 
kg(t) ,  k E R does not stabilize the system. However 
the control u ( t )  = ky( t  - T) ,  k > 0 may ensure the 
stability for sufficiently “small” delays [l, 241. Even 
for such a simple system, the behavior with respect to  
the pair ( k , r )  is very complicuted: if T is thought of 
as a parameter, then for a fixed ‘gain’ k we may have 
a sequence of stability and instability regions in the 
parameter space (k ,  7).  

Although the destabilizing effect of a delay in a sys- 
tem model is well known in the control literature, see, 
e.g. the reference list in [24], the ‘switch’ from insta- 
bility to stability (called also reversal, see, e.g. [SI) has 
not been sufficiently addressed. Note however that, to 
the best authors’ knowledge, it was first discussed by 
Minorsky [23] in the 40s for a second-order (delayed) 
friction equation. f i r ther  comments and remarks on 
delayed oscillatory systems can also be found in [3, 121. 

A different but related problem to problem 1 may be 
stated as follows: 
Problem 2: Assume that (1.1) can be stabilized by 
a static output feedback, then we want to know how 
robust is the closed-loop stability with respect to the 
delay. 

It seems natural that, for ‘small gains’, it is possible 
to ensure the closed-loop stability for any delay value, 
i.e. stability is a delay-independent property, and for 
‘large gains’, stability may be guaranteed only in the 
first-delay interval [0, F(K)) ,  i.e. it is a delay- dependent 
property. The existence of other delay intervals guar- 
anteeing stability in the closed-loop system is also ana- 
lyzed in this paper, along with several robust-stability 
existence results. 

The proposed approach is based on generalized eigen- 
values distribution with respect to the unit circle of 
some appropriate matrix pencils associated to the sys- 
tem. The use of matrix pencils for characterizing 
the existence of static output feedback controllers for 
delay-free systems was already considered in the liter- 

. Some constructive procedures were r e  ~ % ~ ~ ~ ’  $1. Furthermore, matrix pencils techniques 
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in the stability of time-delay systems is intimately re- 
lated to the development of 2 0  stability analysis [SI 
in the commensurate delay case [22, 161 (variables on 
the imaginary axis, and on the unit circle in the com- 
plex plane), and to the linearization of some matrix 
polynomials [19, 201 after ‘reducing’ one of the vari- 
ables [lo, 24, 25, 261 (the variable on the imaginary 
axis). Note that such variable-reducin ideas were al- 
ready encountered in the 19609 in [2f in a different 
framework. 

Due to the difficulty of the general design problem, 
we shall analyze in this paper the analysis problem by 
considering delay-intervals ensuring closed-loop stabd- 
ity for a given, known K .  Some remarks on the case 
K = k l ,  (m = p )  with k free are also included us- 
ing the above approach, but also the MIMO Nyquist 
theorem. The notations are standard, except when oth- 
erwise noted. 

2 Preliminary Results and Definitions 

For a given K E Rmxm, system (l.l), and the corre- 
sponding controller u(t) = K y ( t - ~ ) ,  define the follow- 
ing matrix pencils ~1 E Capx*, E2 E Cnxn: 

z 2 ( z , K )  = t B K C + A .  (2-3) 

where 4@ , #e : RnXn x Rnxn I+ RPxP are defined as 
follows: For all P,Q E Rnxn, 

The symbols @ and @ are the product an i  the sum of 
Kronecker respectively, and the symbols 8 and @ are 
defined as follows [29]: 

PGQ = [ ~ j ]  E Rpxp, where 
1 

G. 9 - - - h i j i  q i z ja  + Pizjzqiiji - PiZjlqiiia - pi1 jzqi2ji 1 > 

with ( i l , i 2 )  the ith pair of the sequence 

(1,2),  (1 ,3) ,  . . . (1 ,n ) ,  (2,3),  - . . (2 ,n ) ,  . . . (n,n) 

and (jl,jz) is generated by duality. For PGQ, we use 
the classical definition of the Kronecker sum: 

PGQ = PGIn + InGQ. 

Using the same arguments as in [24,25], we may prove 
the following result: 

Lemma 1 The following are true: 
1)  The complez number z E C’, I z I# 1 is a generalized 

eigenvalue of the matrix pencil if and only i f  2-l is 
an eigenvalue of C1. 
2) All the generalized eigenvalues on  the unit circle of 
the mat* pencil CZ are also eigenvalues on the unit 
circle f o r  Cl.  

3 Existence Results 

Based on the continuity property with respect to the 
delay of the roots of the closed-loop characteristic equa- 
tion [14], we may prove several ezistence stability re- 
sults. 
Denote g i ( X )  = u(Ci ( z ,  K ) )  (i = m) the set of gen- 
eralized eigenvalue of the matrix pencil C;(z, K), and 
let o K )  = o l (K)  - uz(K) denote the set ofpoints in 

ular matrix pencils see [28] for the exact meaning of 
this assumption). 

Then we have the following results (see [28] for the 
complete proofs): 

u1(K\ but not in u2 K).  Assume also that Ei are reg- 

Proposition 1 (delay-independent) Consider 
a gain mat+ K such that is regular, and such that 
Q = 8 on the unit circle of the complex plane. Then, 
the follow’ng assertions are equivalent: 
i) The static output feedback u(t) = K y ( t )  is  a stabiliz- 
ing law for (1.1); 
ii) The static output feedback u(t) = K y ( t  - T )  is  a 
stabilizing law for  (1.1) for any delay value r .  

Remark  1 (Generalized eigenvalue distribution) 
Note that if the matrix pencil C1 has no eigenvalues on 
the unit circle, then it is dichotomically separable with 
respect to the unit circle 125, 24 Such condition guar- 

delay-independent type property, as remarked in [25]. 
In fact, C1 may have generalized eigenvalues on the 
unit circle, but these eigenvalues should be identical to  
those of Cz. 

antees U = 8,  but it is not s d cient to guarantee the 

Remark 2 (Strong/weak delay-independent) 
I n  terms of system’s parameters, the common gener- 
alized eigenvalues of ’c1 and Cz (u(K) should be non- 
empty) generate hypersurfaces in the parameter-space, 
which have to be included in the corresponding stabil- 
ity regions, since they are related, in some sense, to 
the case r 3 +ca. Such aspect was pointed out an [7], 
and exploited in (241. One may diflerentiate strong and 
weak delay-independent stability notions, by including 
or not the corresponding hypersurfaces in the stability 
regions 241 (and the references therein). I n  this frame- 

results in [16] are weak delay-independent, etc. 
Note that the strong stability notion allows a complete 
decoupling of the complex variables between those on 
the imaginary mas, and on  the unit circle, respectively. 
The weak stability notion allows that 0 is an accumu- 
lation point, in some sense, for generalized eigenval- 
ues (continuously depending on the delay values in the 
Datko’s sense 11411, i f  the delay T + +ca. Such prob- 
lems are better ezplained in a hyperbolicity framework 
(see also (251). 

work, t l  e results proposed an 1221 are strong, and the 
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Remark 3 I n  conclusion, if a ( K )  = 0 on the unit 
circle of the complex plane, the static delayed output 
feedback does not improve the closed-loop stability with 
respect to  the delay-free case. The problem is  reduced 
to  a static output feedback problem(311. 

Proposition 2 (first-delay interval) Consider 
a gain m a t e  K such that C1 is regtllar, and such that 
U # 0 on the unit circle of the complez plane. Then, 
the following assertions are equivalent: 
e) The static output feedback u(t) = K y ( t )  is a stabiliz- 
ing law for (1.1); 
ii) The static output feedback u(t) = K y ( t  - r is a sta- 
bilizing law for  (1.1) for any delay value, r E iO,F(K)), 
where: 

F ( K )  = min min Qj 
I<i<n l<l<p ~ $ 1 '  

e-Oj E u1 ( K ) ,  jwir E u(A + (BKC)) 

Consider the closed-loop system of the strictly proper 
transfer function H ( s )  E Cpxm with the feedback 
u(t) = K y ( t  - r )  for some gain K E Rmxp, and some 
positive r > 0. Introduce now the sets: 

e-jab E e ( K ) ,  
jwk, E B ( A  + e-jhahBKC) - {0}, 

1 5 k < 2 p I  1 < i < n } ,  (3.6) 
f fk  { wki 

 AT,-,^ = ( r k i  9 a k )  : Tki = - < r : 

e - i a h  E c ( K ) ,  
jwki E U ( A  + e"jhabBKC) - {0}, 

l < k 5 2 p ,  1 5 i < n ) .  (3.7) 

The main (existence) result may be written as follo s: 

Proposition 3 (general delay-intervals) The 
strictly proper trunsfer function H ( s )  can be stabilitd 
by delayed output feedback of the form u(t) = Ky(t--7) 
on the delay interval (~,7) if and only if: 
i) it con be stabilized by the same law for some delay 
TO in the same interval, and 
ti) the following inequalities hold simultaneously: 

Y 

inf {r  : (7, a) E Aro, - ,K}  I 2, (3.8) 
s ~ ( 7  : (7, a) E Aro,+ ,K}  2 (3.9) 

Furthermore, based on [13], we may prove the following 
general result: 

Proposition 4 (instability persistence) Let K be 
a real matrix, such that: 
a) the set c ( K )  is not empty, and 
b) the imaginary axis eigenvalues of the complex ma- 
triz A + BKz(K)  where z ( K )  E c ( K )  are simple. 

Then: 
a )  there exists at least one delay interval ( z ( K ) , y ( K ) )  
such that the control law u(t) = K y ( t  - T) is a stabi- 
lizing output feedback for  the tmnsferfunction H ( s )  E 
CmXm f o r  any delay r E (z(K),?(K)), and 
ai) there exists a positive Tmaz, such that for dl T 2 
T,,,,~, the closed-loop system is unstable. 
firthermore, when the delay T varies from 0 to r,,,,,, 
at most a finite number of stability switches may occur. 

4 Constructing delayed output feedbacks 

Consider now the case m = p,  with the output feedback 
u(t) = K y ( t  -r), where K = kl, for some real k, that 
is only one parameter to compute, and the problem 
becomes simpler due to the fact that the parameter 
space ( k ,  r )  can be graphically represented. We shall 
redefine C I , ~  with respect to I C ,  that is: 

C z ( 2 , k )  = zBC +A.  (4.11) 

In this case, the variable z will be on the circle I z I= k ,  
so we will have a family of circles in C. All the existence 
problems, may be rewritten in the new variable k .  The 
idea behind such transformations is to have an invari- 
ant matrix pencil, and to use it to define some "bands" 
in the complex plane (see comments in Remark 1). 

An algorithm for the delayed output feedback may be 
stated as follows: 

i) first, compute the generalized eigenvalues Xi,* - of 
C2, and next compute ki 2 =I Xi,z I , for all i = 1,2. 
These ki,2 values may desne the complex plane circles 
for which one may have delay-independent type results 
in closed-loop. 

ii) next, compute the corresponding generalized 
eigenvalues 5.1 of C1 for IC taking values in the set: 
( k i , ~ } ,  and next compute u(ki,z)  with respect to the 
complex circle of radius ki,2.. 
Then, we may apply the emtence results given above. 

Remark 4 It is clear that a direct analysts of the gen- 
emlized eigenvalues of C1 with respect to some arbi- 
t m d y  fized k leads to a very daficult problem, since we 
such eigenvalues have no sample dependence on the pa- 
rameter k. firthennore, working directly with I z l= l 
gives no particular choice on the pommeter k. 

A different analysis can be done using directly the 
MIMO Nyquist theorem. The corresponding result can 
be resumed as follows (see [28] for the proof): 

Theorem 1 Let H ( s )  be a square transfer matrix with 
Po unstable Smith-Macmillan poles. Let Xi(s); i = 
1 , .  . , m be the eigenvalues of G(s). Then, the closed- 
loop system with feedback input U = -Ky( t  - TO) 
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with K = k I  w stable i f  and only i f  the gmphs of 
e-uToX,(s);i = l , . . - ,n  taken together encircle the -1 
point, PO times in the counterclockwise direction. 

5 Examples 

We shall apply the previous results to three different 
examples. 

5.1 Stabilizing- oscillations using delays 
Consider a simple second-order oscillatory system [l]: 

(5.12) 

with wo, E R*. As specified, it is not possible to stabi- 
lize it by static delayed output feedback of the form: 

u(t) = ky( t  - T ) ,  (5.13) 

By taking 

we may apply directly the proposed approach, and- 
thus, we have the.following stabilization result: 

Proposition 5 The system (5.12) con be stabilized by 
delayed output feedback u(t) = ky( t - r )  for all the pairs 
(k, r )  satishng simultaneowly: 
i) the gain k E (0 ,w2) ,  and 
ii) the delay T E (ripk),?i(k)) where: 

for i = 0,1,  .... Furthermore, i f  r = Zi(k) .or 
r = Fi(k),  the corresponding characteristic equahon 
in closed-loop has at least one eigenvalue on the imag- 
i n a y  axis. 
The regions of stabilizing k shrink as the delay r gets 
larger, and furthennore for euch k there exists a value 
r ” ( k ) ,  such that for any T > r ’ (k)  the closed-loop sys- 
tem is unstable. - 

So, if we take i = 0, we see that the first delay inter- 
val guaranteeing the closed-loop stability is given by: 

7 E (0, *). Using a different argument to those 

already proposed in the paper, let us prove that for suf- 
ficiently small delays r = E > 0 the closed-loop system 
is stable for any k E (0, w,”). Consider the characteristic 
equation associated to the system: 

s 2 + w i -  ke-BT = 0. (5.15) 

If T = 0, the corresponding roots are on the imaginary 
axis s = icjwo. Consider now a delay r = E > 0. 
Simple computations give: 

(5.16) 
ds s(s2 + w,”) 
d r  E(S2  +U:) + 2s’ 
- = -  
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Since the roots on the imaginary axis of (5.15) are sim- 
ple w = Jw, it follows that the crossing direction 
of the roots (from left to right, or from right to left) 

is given by the s g n  { Re ($)} when s = j w :  “+I” 

from stability to instability, and “-1” from instability 
to stability (Note that the condition on the simplicity 
of the roots is necessary, since if not the corresponding 
derivative will be 0, etc.). 

Simple computations in (5.16) lead to the following: 

wyw;  - w2) 

which is always negative, for sufficiently small value 
E > 0, and for any IC E: (0, w,”), etc. 

Remark 5 The same results can be obtained using dif- 
ferent approaches, 09 for example, the study of the 
corresponding characteristic equation [ZlJ, or using 
Nyquist criterion 111. 

Remark 6 A similar analysis can be done if we ‘as- 
sume that k < 0. Note that for such situation the sys- 
tem i s  still unstable for sufticiently small delay values 
r = E > 0, and any k < 0, I k I< WO”.  However, it will 
be stabilized on some delay intervals, etc. 

5.2 Delay measurements in active displacement 
In active displacement control (flexible structures), a 
time delay T always exists between measuring the de- 
flection and applying the active displacement feedback. 
Since the corresponding delay-free, closed-loop model 
is, in general, stable, the problem is to study the delay 
effects on the closed-loop stability, with respect to the 
two parameters: a) the (point or lumped) delay; b) the 
gain of the active displacement feedback. 

Based on the study proposed in [30], the stability (in- 
stability) problem can be reduced to the analysis of the 
following transcendental equation: 

+ PnS + An + ke-BT = 0, (5.17) 

with /in, A, (associated eigenvalues corresponding to 
some orthogonal eigenvectors of some self-adjoint op- 
erators, etc. ) and k (displacement control feedback 
parameter) positive. 
Some algebraic manipulations combined with the exis- 
tence results given above lead to the following results: 

Proposition 6 (Delay-independent results) The 
following statements are equivalent: 
1)  The system (5.17) is  delay-andependent asymptoti- 
cally stable. 
2) The pammeters (p,,, A,, k) satisfy the following con- 



stmints: 

If the conditions above are not satisfied, the only possi- 
bility to have is a delay-dependent type result. We shall 
consider two cases: only one switch (with no rever- 
sal), and several switches and reversal. The first caae 
is already encountered in the scalar case, and the sec- 
ond one appears firstly with the second order systems. 
The proposed results can be summarized as follows (the 
proofs are in the full version of the paper [28]): 

Proposition 7 (Only one switch) The following 
statements are equivalent: 
1) The system (5.17) is delay-dependent stable, and 
them &ts only one switch from stability to instability 
without any reversal. 
2) The parameters (pn, An, k) satisfy the following con- 
stmints: 

kn E R+ 
k E (--oo, -An] U [An, +-oo) 
An E ( ~ P ; , + W )  . (5.19) 

Proposition 8 (Delay bound) Consider the second 
order system (5.17), and assume k > 0. 
If the parameters (k ,pn,An)  satisfy the constmints 
(5.19), then the system (5.17) is asymptotically sta- 
ble for all delays T E ( O , ~ ~ ~ i t ~ j , ) ,  and unstable for any 
T > Tawitchp where: rawitch = 

. (5.20) 1 k2 + 4 ~ :  - 4p;An - 2p: 
-arccos "+ ( J  k 

with 

At  r = Tawitch, the characteristic equation has two 
complez conjugate eigenvalues on the imaginary axis. 

Proposition 9 (several switches and reversals) 
The following statements are equivalent: 
1) The system (5.17) is delay-dependent stable, and 
there ezists seveml switches and reversals. 
2) The pammeters (pnl An, k) satisfy the following con- 
stmints: 

The first switch from stability to instability, and the 
first reversal from instability to stability are given by: 

Proposition 10 (Delay bounds) Consider the se- 
ond order system (5.17), and assume k > 0. 
If the pammeters (k,pn,An) satisb the constraints 
(5.21), then the system (5.17) is asymptotically sta- 
ble for all delays r E (O,r.witch), and unstable for all 
delays r E (rSwitch, Treveraol), where the delay switch 
Tnwitch is given by: 

and the delay reversal rreversa1 is given by: 

with: 

At  r E {r,witch, Treve+-rol}, the characteristic equation 
has two wmplez conjugate eigenvalues on the imagi- 
nary axis. 

Remark 7 If we take pn = 0, we recover the bounds 
proposed in $4.1 (stabilizing oscillations), 

5.3 Integrodifferential models for commodity 
markets 
In [4 ,  the following distributed-discrete delay model 
(R,  d > 0): 

e*z( t  + e)de  + z(t - r) = @.xi) 

has been used for describin interactions between con- 
sumer memory and price &ctuations on commodity 
markets. Simple computations prove that (5.25) has 
the same characteristic equation as the differentid 
equation with discrete delays: 

1 Q 1 Z(t) + x k ( t )  + P ( t  - 7) + -z(t) + x ~ ( t  - 7 )  = 0, (5.26) R 

which is a second-order delay differential system. The 
analysis of the stability regions in the parameters space 
(Q, R, T )  may be easily transformed to an output static 
delay feedback problem: 

Given the system - = + find all the 
4 8 )  82 + &s + $4 ' delay-intervals ( 3 ( Q , R ) , 3 ( Q , R ) ) ,  n n  i = 0,. .., such 

that the closed-loop is stable via the output feedback 
u ( t )  = - y ( t  - 7 ) .  

Using the results presented above the complete char- 
acterization of the stabiiity regions becomes an easy 
task. 
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6 Conclusions 

This paper presented a compilation of the effects of d e  
lay on the static output feedback problem. We have 
generalized our earlier reseacrh on the presence of sta- 
bility “switches” using a matrix pencil approach and 
have laid the foundation for future work on multivari- 
able static controllers. We have also provided numerous 
exampIes to illustrate the applicability of our results. 
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