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Abstract- Deterministic dynamic nonlinear time-delay 
systems a re  developed to model load balancing in a clus- 
ter of computer nodes used for parallel computations. T h e  
model is shown to be self consistent in  t h a t  t he  queue  lengths 
cannot go negative a n d  t h e  total number  of tasks in  all t h e  
queues are conserved (i.e., load balancing can  neither c rea te  
nor  lose tasks). Further,  i t  is shown t h a t  using t h e  proposed 
load balancing algorithms, t h e  system is stable. Experimen- 
tal results are presented and compared with t h e  predicted 
results from t h e  analytical  model. In particular, simulations 
of t h e  models are compared with a n  experimental  implemen- 
ta t ion of t he  load balancing algorithm on a parallel computer  
network. 

Keywords- Load balancing, Computer  Networks, T ime  
Delay Systems. 

I. INTRODUCTION 
Parallel computer architectures utilize a set of compu- 

tational elements (CE) to achieve performance that is not 
attainable on a single processor, or CE, computer. A com- 
mon architecture is the cluster of otherwise independent 
computers communicating through a shared network. To 
make use of parallel computing resources, problems must 
be broken down into smaller units that can be solved in- 
dividually by each CE while exchanging information with 
CEk solving other problems. For a background on mathe- 
matical treatments of load balancing, the reader is referred 

The present work focuses upon the effects of delays in the 
exchange of information among CEs, and the constraints 
these effects impose on the design of a load balancing strat- 
egy. Previous results by the authors appear in [4][5]. How- 
ever, new nonlinear models are developed here. Specifi- 
cally, a deterministic dynamic nonlinear timedelay system 
is developed to model load balancing. The model is shown 
to be self consistent in that the queue lengths cannot go 
negative and the total number of tasks in all the queues and 
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the network are conserved (i.e., load balancing can neither 
create nor lose tasks). Simulations of the nonlinear model 
are then compared with an experimental implementation of 
the load balancing algorithm on a parallel computer net- 
work. 

Section 2 presents our approach to modeling the com- 
puter network and load balancing algorithms to incorp6 
rate the presence of delay in communicating between nodes 
and transferring tasks. Further, it is shown that the model 
correctly models the nonnegativity of he queue lengths and 
that the total number of tasks in all the queues and in 
transit is conserved by the load balancing algorithm. This 
section ends with a proof of stability of the model for 
the chosen load balancing algorithms (controllers). Sec- 
tion 3 presents simulations of the nonlinear models used 
for comparison with the actual experimental data. Section 
4 presents experimental data from an implementation of 
the load balancing algorithm (controller). Finally, Section 
5 is a summary and conclusion of the present work and a 
discussion of future work. 

11. MODELS OF LOAD BALANCING ALGORITHMS 
In this section, continuous time models are developed to 

model load balancing among a network of computers. A 
basic model is described first to give the overall approach 
used here. This basic model is a nonlinear system with de- 
lay which is then simplified to obtain a linear time-invariant 
system with delay. Finally, the nonlinear model is modified 
so that the number of tasks a node distributes to the other 
nodes is based on their relative load levels. 

To introduce the basic approach to load balancing, 
consider a computing network consisting of n computers 
(nodes) all of which can communicate with each other. At 
start up, the computers are assigned an equal number of 
tasks. However, when a node executes a particular task 
it can in turn generate more tasks so that very quickly 
the loads on various nodes become unequal. To balance 
the loads, each computer in the network sends its queue 
size q j ( t )  to all other computers in the network. A node 
i receives this information from node j delayed by a finite 
amount of time ~ i j ;  that is, it receives q j ( t  - ~ i j ) .  Each 
node i then uses this information to compute its local esti- 
matel of the average number of tasks in the queues of the n 
computers in the network. In this work, the simple estima- 
tor ET=, q j ( t  - ~ i j )  / n  ( ~ i i  = 0) which is based on the 
most recent observations is used. Node i then compares its 
queue size q i ( t )  with its estimate of the network average as 

( ) 

'It is an estimate because at any time, each node only has the 
delayed value of the number of tasks in the other nodes. 
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(q,(t)  - (E,”=, qJ(t  - T , ~ ) )  / n )  and, if this is greater than 
zero, the node sends some of its tasks to the other nodes. 
If it is less than zero, no tasks are sent. f i t h e r ,  the tasks 
sent by node z are received by node j with a delay h*J. 
The controller (load balancing algorithm) decides how of- 
ten and fast to do load balancing (transfer tasks among the 
nodes) and how many tasks are to be sent to each node. 

As just explained, each node controller (load balancing 
algorithm) has only delayed values of the queue lengths of 
the other nodes, and each transfer of data from one node 
to another is received only after a finite time delay. An 
important issue considered here is the effect of these delays 
on system performance. Specifically, the continuous time 
models developed here represent our effort to capture the 
effect of the delays in load balancing techniques and were 
developed so that system theoretic methods could be used 
to analyze them. 

A .  Basic Model 
The basic mathematical model of a given computing 

node for load balancing is given by 

where 

sat (y) = y if y 2 O 
= 0 if y < 0. 

In this model we have 
n is the number of nodes. 
x Z ( t )  is the expected waiting time experienced by a task 

inserted into the queue of the z th  node. With q,(t) the 
number of tasks in the z th  node and tp, the average time 
needed to process a task on the z th  node, the expected 
(average) waiting time is then given by zz( t )  = ql ( t ) tp , .  
Note that xJ/ tpJ = qJ is the number of tasks in the node j 
queue. If these tasks were transferred to node i, then the 
waiting time transferred is et,, = x3t,,/t,, so that the 
fraction t,,/t,, converts waiting time on node J to waiting 
time on node i. 

A, 2 0 is the rate of generation of waiting time on the 
ith node caused by the addition of tasks (rate of increase 
in x,) 

p, 2 0 is the rate of reduction in waiting time caused 
by the service of tasks at the z t h  node and is given by 
pz-((l x t p , ) / t , ,  =lforallzifz,(t)  >O,whileifz,(t)=O 
then p, 0, that is, if there are no tasks in the queue, then 
the queue cannot possibly decrease. 

ui(t) is the rate of removal (transfer) of the tasks from 
node i at time t by the load balancing algorithm at node 
i. Note that ui(t) 5 0. 

pi ju j ( t )  is the rate at which node j sends waiting time 
(tasks) to node i at time t where pij 2 0, pij = 1 and 
pjj  = 0. That is, the transfer from node j of expected wait- 
ing time (tasks) h: uj ( t )d t  in the interval of time [tl ,  t z ]  to 
the other nodes is carried out with the ith node receiving 
the fraction pij ( tpi / tpJ)  J: uj ( t )d t  where the ratio tpi/tpi 
converts the task from waiting time on node j to waiting 
time on node i. As (pij  Ly uj ( t )d t )  = L: uj ( t )d t ,  
this results in removing all of the waiting time St: uj(t)dt 
from node j .  

The quantity -pijuj(t - hij) is the rate of increase (rate 
of transfer) of the expected waiting time (tasks) at time t 
from node j by (to) node i where hij (hii = 0)  is the time 
delay for the task transfer from node j to node i. 

The quantities rij ( ~ i i  = 0 )  denote the time delay for 
communicating the expected waiting time xj from node j 
to node i. 

The quantity sqVg = (E;=, xj(t - ~ i j )  / n  is the esti- 
mate2 by the ith node of the average waiting time of the 
network and is referred to as the local average (local esti- 
mate of the average). 

In this model, all rates are in units of the rate of change 
of expected waiting time, or time/time which is dimension- 
less. As ui(t) < 0, node i can only send tasks to other 
nodes and cannot initiate transfers from another node to 
itself. A delay is experienced by transmitted tasks b e  
fore they are received at the other node. The control law 
ui(t) = -Kisat(yi(t)) states that if the ith node output 
zi(t) is above the local average E;=, zj(t - T V ) )  /n,  then 
it sends data to the other nodes, while if it is less than the 
local average nothing is sent. The j t h  node receives the 
fraction hy pj i  (tp, / t p j )  ui(t)dt  of transferred waiting time 
L: ui ( t )d t  delayed by the time hij. 

Model (1) is the basic model, but one important detail 
remains unspecified, namely the exact form p;j for each 
sending node i. One approach is to choose them as constant 
and equal 

) 

( 

where it is clear that pji 2 0, Pij  = 1 

B. Model Consistency 

It is now shown that the model is consistent with actual 
working systems in that the queue lengths cannot go neg- 
ative, and the load balancing algorithm cannot create or 
lose tasks; it can only move then between nodes. 

‘This is an only an estimate due t o  the delays. 
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B.l  Non Negativity of the Queue Lengths 

To show the non negativity of the queue lengths, recall 
that the queue length of each node is given by qi(t)  = 
xi(t)/ tpi .  The model is rewritten in terms of these quanti- 
ties as 

(3) 
Given that zi(0) > 0 for all i, it follows from the right- 
hand side of (3) that qi(t) = xi(t)/ tp,  > 0 for all t > 0 and 
all i. To see this, suppose without loss of generality that 
qi(t)  = xi(t)/tp, is the first queue to go to zero, and let tl be 
the time when xi(t1) = 0. At the time t l ,  X i  -p i  = X i  1 0 
by the definition of pi and - Cj”=, p u j ( t -  hij) 2 0 for all 
time by the definition of the uj. Further, the term ui(t1) 
is negative only if 

PJ 

(4) 

By supposition (up to time t l )  all the z j ( t 1  - r i j )  > 0 
for j # i and zi(t1) = 0 so that ui(t1) = 0 as the right 
side of (4) is positive at time tl .  Consequently, at time tl 
all terms on the right-hand side of (3) are non negative. 
Further, xi@) cannot go negative in a neighborhood of tl .  
For if it did, as the right-hand side of (4) is continuous, it 
follows that 

for some t E (t1,tl + 6 )  with 6 > 0. Therefore, ui(t) = 0 
for all t E [tl, tl + a] and the right-hand side of (3) is non 
negative for all t E [tl, tl + 61 which contradicts zi(t) < 0. 
Note that tl + 6 can be taken to be at least as large as the 
time at which some Z k  goes to zero, that is, qk(tl+ 6) = 0 
as the right hand side of ( 5 )  must remain positive for t E 

If zi(t) goes positive after t l ,  then the above argument 
is repeated at the next time a queue goes to zero. If xi(t)  
remains identically zero in the interval (tl,tl+6), then the 
argument is also similar in that at time t l + 6 ,  both x i ( t l+ 
6) ,  Tk(t1+6) are then zero. As the remaining n-2 nodes are 
still positive, the right-hand side of equation (5) continues 
to hold with both xi and X k  zero at time tl + 6 and one 
again gets a contradiction if either xi or xk goes negative 
in an interval (tl + 6 , t z ) .  Continuing in this manner, it 
follows that qi(t) = xi( t ) / tp ,  cannot go negative for all i. 

[tl, tl + 4. 

B.2 Conservation of Queue Lengths 

It is now shown that the total number of tasks in all the 
queues and the network are conserved. To do so, sum up 

equations (3) from i = 1, ..., n to get 

which is the rate of change of the total queue lengths on all 
the nodes. However, the network itself also contains tasks 
in transit between nodes. The dynamic model of the queue 
lengths in the network is given by 

n n 
d P’ . ;tiqneti ( t )  = C s U j ( t  - hij) - %uj(t). (7) 

j=1 t p  j j=1 t P 3  

Here qnet, is the number of tasks put on the network that 
are being sent to node i. This equation simply says that 
the j t h  node is putting tasks on the network to be sent to  
node i at the rate Puj(t) while the ith node is taking these 
tasks from node j off the network at the rate pu j ( t  - hij). 

Summing (7) over all the nodes, one obtains 

P J  

=3 

(8) 
Adding (6) and (8), one obtains the conservation of queue 
lengths given by 

In words, the total number of tasks which are in the sys- 
tem (i.e., in the nodes and/or in the network) can increase 
only by the rate of arrival of tasks &Itp, at all the 
nodes, or similarly, decrease by the rate of processing of 
tasks p z / t p l  at all the nodes. The load balancing it- 
self cannot increase or decrease the total number of tasks 
in all the queues. 

B.3 Stability of the Model 
Combining the results of the previous two subsections, 

one can show stability of the model. Specifkally, we have 
Theorem: Given the system described by (1) and (7) 

with A, = 0 for i = 1, ..., n and initial conditions ~ ~ ( 0 )  2 0, 
then (q,(t), qnet , ( t ) )  + 0 as t + 00. 

Proof: First note that the qnet, are non negative as 

Under the conditions of the theorem, equation (9) becomes 
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Let V(t> Er=, (qz(t) + Qnet, ( t ) ) ,  and, as the 47 (t) ,  qnet, ( t )  
are non negative, V ( t )  2 0 and is equal to zero if and only 
if q , ( t )  = O,q,,t,(t) = 0. (This is a time delay system so 
( q z ( t ) ,  qnet, ( t ) )  is not the state of the system [6]). Further, 
as p2(q2(t)) = 1 for q2(t) > 0 and p,(q,(t)) = 0 if only if 
q,( t )  = 0, it follows that dV/d t  = - Erzl p2(q,(t))/tp, 5 0. 
This then implies that 

is monotonically decreasing. As V ( t )  is bounded below, we 
have V ( t )  1. Vf 2 0, or 

The quantity pi(qi(t)) is either 1 or 0 depending on whether 
q i ( t )  is positive or zero, so pi(qi(t)) can be viewed as a 
set of pulses of unit height and varying width. The inte- 
gral lo" pi(qi(t))dt is finite by (13) which implies that the 
widths of the unit-height pulses making up p i ( q i ( t ) )  must 
go to zero as t --+ CO. So, even if a q i ( t )  (= zi(t)/tp,) con- 
tinues to switch between zero and positive non zero, the 
time intervals for which it is non zero must go to zero as 
t -+ CO. Summarizing, the qi( t )  are non negative, continu- 
ous functions, bounded by the non negative monotonically 
decreasing function V ( t ) ,  and the intervals for which the 
qi(t)  are non zero goes to zero as t -+ CO. Further, as 

it follows that the time intervals for which the bounded 
functions ui(t) are non zero must go to zero as t -+ CO. 

Consequently, by equation (lo), qnet,(t) -+ 0 as t -+ CO. 

We now show that the monotonically decreasing function 
V ( t )  must go to zero, that is, lim+,w V ( t )  = Vf = 0. 
Suppose not, so that Vf > 0. As qnet,(t) -+ 0, choose tl 
large enough SO that 0 5 qnet, ( t )  < cVf for t > tl 
where 0 < E < 1. Then 

and 
n 

Cqi(t) 4 (1.- e) V, > o for t > t l .  

This in turn implies that at least one of the qi(t) > 0 for 
all t > tl  and therefore E&, pt(qi(t))/tp,dt 2 min{l/tp,} 
for all t > t l .  By equation ( l l ) ,  we then have 

i=l 

As the right side of (14) eventually becomes negative, we 
have a contradiction and therefore Vf = 0. As it has al- 
ready been shown that qneti -+ 0 for all i ,  V(t )  -i 0 then 
implies that the non negative functions q i ( t )  -i 0 for all i .  

111. SIMULATIONS 
Experimental procedures to determine the delay values 

are given in [7] and summarized in [8]. These give represen- 
tative values for a Fast Ethernet network with three nodes 
ofri j  = r  =200psecfori# j , r iz=O,andhi j  = 2 ~ = 4 0 0  
psec for i # j ,  hii = 0. The initial conditions were 
zl(0) = 0.6, z~(0 )  = 0.4 and z3(0) = 0.2. The inputs 
were set as A1 = 3p1, A2 = 0, A3 = 0, p1 = p2 = p 3  = 1. 
The t,, 's were taken to be equal. 

In this set of simulations, the model (1) is used. Figures 
1 and 2 show the responses with the gains set as K = 
1000 and K = 5000. To compare with the experimental 
results given in Figure 4, Figure 3 are the output responses 
with the gains set as K1 = 6667, K2 = 4167, K3 = 5000, 
respectively. 

0 8  

061' 

.. ... ... - .... ... - .... .... . . . _I__ 

.. . . ... ... 
o h  ____---- 

I 

0.002 0.004 0.006 0.008 0.01 
4.6 ' 

Tnm in sec% 

Fig. 1. Constant p i j  nonlinear output responses with K = 1000. 
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2. Constant p , j  nonlinear output responses with K = 5000. 
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is related to the number of tasks as xi(t) = qi(t)tpi where 
t ,  is the average time to carry out a task. The continuous 
time control law is 

- i *‘ 

I 
- v3 

0 0.002 0 . m  0.008 0.m 0.01 
lime in sew 

Fig. 3. Nonlinear simulation with constant p, j  and K1 = 
6666.7; K 2  = 4166.7; K 3  = 5000 

IV. EXPERIMENTAL RESULTS 
A parallel machine has been built to implement an exper- 

imental facility for evaluation of load balancing strategies. 
A root node communicates with k groups of computer net- 
works. Each of these groups is composed of n nodes (hosts) 
holding identical copies of a portion of the database. (Any 
pair of groups correspond to different databases, which are 
not necessarily disjoint. A specific record, or DNA profile, 
is in general stored in two groups for redundancy to pro- 
tect against failure of a node.) Within each node, there 
are either one or two processors. In the experimental facil- 
ity, the dual processor machines use 1.6 GHz Athlon MP 
processors, and the single processor machines use 1.33 GHz 
Athlon processors. All run the Linux operating system. 
Our interest here is in the load balancing in any one group 
of n nodes/hosts. 

The database is implemented as a set of queues with 
associated search engine threads, typically assigned one 
per node of the parallel machine. The search requests 
are created not only by the database clients; the search 
process also creates search requests as the index tree is d e  
scended by any search thread. This creates the opportunity 
for parallelism; search requests that await processing may 
be placed in any queue associated with a search engine, 
and the contents of these queues may be moved arbitrarily 
among the processing nodes of a group to achieve a balance 
of the load. 

An important point is that the actual delays experienced 
by the network traffic in the parallel machine are random. 
Work has been performed to characterize the bandwidth 
and delay on unloaded and loaded network switches, in or- 
der to identify the delay parameters of the analytic models 
and is reported in [7] [8]. The value T = 200 p sec used for 
simulations represents an average value for the delay and 
was found using the procedure described in [8]. The in- 
terest here is to compare the experimental data with that 
from the three models previously developed. 

To explain the connection between the control gain K 
and the actual implementation, recall that the waiting time 

- 

u(t)  = -Ksat (y,(t)) 

where u(t)  is the rate of decrease of waiting time x,(t) per 
unit time. Consequently, the gain K represents the rate of 
reduction of waiting time per second in the continuous time 
model. Also, yz(t)  = (q,(t) - (E,”,, qJ(t - ~ ~ ~ 1 )  /n) tp,  = 
r,(t)t,, where r,(t) is simply the number of tasks above 
the estimated (local) average number of tasks and, as the 
interest here is the case y,(t) > 0, consider u(t)  = -Ky,(t). 
With At the time interval between successive executions of 
the load balancing algorithm, the control law says that a 
fraction of the queue Kzrz(t)  (0 < K,  < 1) is removed 
in the time At so the rate of reduction of waiting time is 
-KZrl(t)tpr / A t  = -K,y,(t)/At so that 

This shows that the gain K is related to the actual im- 
plementation by how fast the load balancing can be car- 
ried out and how much (fraction) of the load is trans- 
ferred. In the experimental work reported here, At ac- 
tualIy varies each time the load is balanced. As a come 
quence, the value of At used in (15) is an average value 
for that run. The average time t,, to process a task is 
the same on all nodes (identical processors) and is equal 
10psec while the time it takes to ready a load for trans- 
fer is about 5p sec. The initial conditions were taken as 
q I ( 0 )  = 6000, qZ(0) = 4000, q3(0) = 2000 (corresponding to 
~ i ( 0 )  = qi(0)tpi = 0.06,~2(0) = 0.04,~3(0) = 0.02). All of 
the experimental responses were carried out with constant 
p,j = 1/2 for i # j. 

Figure 4 is a plot of the responses r,(t) = q,( t )  - 
qJ(t  - T,)) /n for i = 1,2,3 (recall that yZ(t) = 

rz(t)tp,). The (average) value of the gains were ( K ,  = 0.5) 
K1 = 0.5/75psec = 6667, K2 = 0.5/120psec = 4167, K3 = 
0.5/100psec = 5000. This figure compares favorably with 
Figure 3 except for the time scale being off; that is, the ex- 
perimental responses are slower. The explanation for this 
it that the gains here vary during the run because At (the 
time interval between successive executions of the load bal- 
ancing algorithm) varies .during the run. Further, this time 
At is not modeled in the continuous time simulations, only 
its average effect is represented in the gains Ki. That is, 
the continuous time model does not stop processing jobs 
(at the average rate t p z )  while it is transferring tasks to do 
the load balancing. 

Figure 5 shows the plots of the response for the (av- 
erage) value of the gains given by ( K ,  = 0.2) K1 = 
0.2/125psec = 1600,K2 = 0.2/80psec = 2500,K3 = 
0.2/70psec = 2857. The initial conditions were ql(0) = 

0.06,x2(0) = 0.04,x3(0) = 0.02). Figure 6 shows the 
plots of the response for the (average) value of the gains 

6000,q2(0) = 4000,q3(0) = 2000 ( ~ l ( 0 )  = ql(O)t,, = 
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average value of the gains are 
2500, K3 = 2857 with constant p i j .  

given by (K ,  = 0.3) Kl = 0.3/125psec = 2400,Kz = 
O.S/llOpsec = 7273, K3 = 0.3/120psec = 2500. 

2001. 

V. SUMMARY AND CONCLUSIONS 

A load balancing algorithm was modeled as a nonlinear 
time-delay system. The model was shown to be consis- 
tent in that the total number of tasks was conserved and 
the queues were always non negative. Further, the system 
was shown to be always stable, but the delays do create a 
limit on the size of the controller gains in order to ensure 
performance (fast enough response without oscillatory be- 
havior). Experiments indicated a correlation of the contin- 
uous time models with the actual implementation. Future 
work will consider the fact that the load balancing oper- 
ation involves processor time which is not being used to 
process tasks. There is a trade-off between using processor 
timelnetwork bandwidth and the advantage of distribut- 
ing the load evenly between the nodes to reduce overall 
processing time. 
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