
Proceedings of the 42nd IEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003 TuM03-4

The Effect of Time Delays in the Stability of Load
Balancing Algorithms for Parallel Computations
J. D. Birdwell, John Chiasson, C. T. Abdallah,

Abstract- Deterministic dynamic nonlinear time-delay
systems a re developed to model load balancing in a clus-
ter of computer nodes used for parallel computations. T h e
model is shown to be self consistent in t h a t t he queue lengths
cannot go negative a n d t h e total number of tasks in all t h e
queues are conserved (i.e., load balancing can neither c rea te
nor lose tasks). Further, i t is shown t h a t using t h e proposed
load balancing algorithms, t h e system is stable. Experimen-
tal results are presented and compared with t h e predicted
results from t h e analytical model. In particular, simulations
of t h e models are compared with a n experimental implemen-
ta t ion of t he load balancing algorithm on a parallel computer
network.

Keywords- Load balancing, Computer Networks, T ime
Delay Systems.

I. INTRODUCTION
Parallel computer architectures utilize a set of compu-

tational elements (CE) to achieve performance that is not
attainable on a single processor, or CE, computer. A com-
mon architecture is the cluster of otherwise independent
computers communicating through a shared network. To
make use of parallel computing resources, problems must
be broken down into smaller units that can be solved in-
dividually by each CE while exchanging information with
CEk solving other problems. For a background on mathe-
matical treatments of load balancing, the reader is referred

The present work focuses upon the effects of delays in the
exchange of information among CEs, and the constraints
these effects impose on the design of a load balancing strat-
egy. Previous results by the authors appear in [4][5]. How-
ever, new nonlinear models are developed here. Specifi-
cally, a deterministic dynamic nonlinear timedelay system
is developed to model load balancing. The model is shown
to be self consistent in that the queue lengths cannot go
negative and the total number of tasks in all the queues and

-

to PI PI PI.

J. D. Birdwell, J. Chiasson, 2. Tang and Nivedita Alluri are with
the ECE Dept, The University of Tennessee, Knoxville TN 37996,
budweUOutk.edu,chiassonOutk.edu,tangOhickory.en~.utk.edu

C. T. Abdallah is with the ECE Dept, University of New Mexico,
Alburquerque NM 87131-1356, USA, chaoukiOeece.unm.edu

T.W. Wang is with the Chem E Dept, The University of Tennessee,
Knoxville TN 37996. twangOutk.edu

The work of the J.D. Birdwell, J. Chiasson and C.T. Abdallah was
supported in part by the National Science Foundation. The work
of J.D. Birdwell, T.W. Wang and 2. Tang was supported by US.
Department of Justice, Federal Bureau of Investigation under con-
tract J-FBI-98-083. Drs. Birdwell and Chiasson were also partially
supported by a Challenge Grant Award from the Center for Infor-
mation Technology Research at the University of Tennessee. The
work of C.T. Abdallah was supported in part by the National Science
Foundation through grant INT-9818312. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either
expressed or implied, of the U.S. Government.

Zhong Tang, Nivedita Alluri and Tsewei Wang

the network are conserved (i.e., load balancing can neither
create nor lose tasks). Simulations of the nonlinear model
are then compared with an experimental implementation of
the load balancing algorithm on a parallel computer net-
work.

Section 2 presents our approach to modeling the com-
puter network and load balancing algorithms to incorp6
rate the presence of delay in communicating between nodes
and transferring tasks. Further, it is shown that the model
correctly models the nonnegativity of he queue lengths and
that the total number of tasks in all the queues and in
transit is conserved by the load balancing algorithm. This
section ends with a proof of stability of the model for
the chosen load balancing algorithms (controllers). Sec-
tion 3 presents simulations of the nonlinear models used
for comparison with the actual experimental data. Section
4 presents experimental data from an implementation of
the load balancing algorithm (controller). Finally, Section
5 is a summary and conclusion of the present work and a
discussion of future work.

11. MODELS OF LOAD BALANCING ALGORITHMS
In this section, continuous time models are developed to

model load balancing among a network of computers. A
basic model is described first to give the overall approach
used here. This basic model is a nonlinear system with de-
lay which is then simplified to obtain a linear time-invariant
system with delay. Finally, the nonlinear model is modified
so that the number of tasks a node distributes to the other
nodes is based on their relative load levels.

To introduce the basic approach to load balancing,
consider a computing network consisting of n computers
(nodes) all of which can communicate with each other. At
start up, the computers are assigned an equal number of
tasks. However, when a node executes a particular task
it can in turn generate more tasks so that very quickly
the loads on various nodes become unequal. To balance
the loads, each computer in the network sends its queue
size q j (t) to all other computers in the network. A node
i receives this information from node j delayed by a finite
amount of time ~ i j ; that is, it receives q j (t - ~ i j) . Each
node i then uses this information to compute its local esti-
matel of the average number of tasks in the queues of the n
computers in the network. In this work, the simple estima-
tor ET=, q j (t - ~ i j) / n (~ i i = 0) which is based on the
most recent observations is used. Node i then compares its
queue size q i (t) with its estimate of the network average as

()

'It is an estimate because at any time, each node only has the
delayed value of the number of tasks in the other nodes.

0-7803-7924-1/03/$17.00 02003 IEEE 582

http://chaoukiOeece.unm.edu
http://twangOutk.edu

(q,(t) - (E,”=, qJ(t - T , ~)) / n) and, if this is greater than
zero, the node sends some of its tasks to the other nodes.
If it is less than zero, no tasks are sent. f i t h e r , the tasks
sent by node z are received by node j with a delay h*J.
The controller (load balancing algorithm) decides how of-
ten and fast to do load balancing (transfer tasks among the
nodes) and how many tasks are to be sent to each node.

As just explained, each node controller (load balancing
algorithm) has only delayed values of the queue lengths of
the other nodes, and each transfer of data from one node
to another is received only after a finite time delay. An
important issue considered here is the effect of these delays
on system performance. Specifically, the continuous time
models developed here represent our effort to capture the
effect of the delays in load balancing techniques and were
developed so that system theoretic methods could be used
to analyze them.

A . Basic Model
The basic mathematical model of a given computing

node for load balancing is given by

where

sat (y) = y if y 2 O
= 0 if y < 0.

In this model we have
n is the number of nodes.
x Z (t) is the expected waiting time experienced by a task

inserted into the queue of the z th node. With q,(t) the
number of tasks in the z th node and tp, the average time
needed to process a task on the z th node, the expected
(average) waiting time is then given by zz(t) = ql (t) tp , .
Note that xJ/ tpJ = qJ is the number of tasks in the node j
queue. If these tasks were transferred to node i, then the
waiting time transferred is et,, = x3t,,/t,, so that the
fraction t,,/t,, converts waiting time on node J to waiting
time on node i.

A, 2 0 is the rate of generation of waiting time on the
ith node caused by the addition of tasks (rate of increase
in x,)

p, 2 0 is the rate of reduction in waiting time caused
by the service of tasks at the z t h node and is given by
pz-((l x t p ,) / t , , =lforallzifz,(t) >O,whileifz,(t)=O
then p, 0, that is, if there are no tasks in the queue, then
the queue cannot possibly decrease.

ui(t) is the rate of removal (transfer) of the tasks from
node i at time t by the load balancing algorithm at node
i. Note that ui(t) 5 0.

pi ju j (t) is the rate at which node j sends waiting time
(tasks) to node i at time t where pij 2 0, pij = 1 and
pjj = 0. That is, the transfer from node j of expected wait-
ing time (tasks) h: uj (t)d t in the interval of time [tl , t z] to
the other nodes is carried out with the ith node receiving
the fraction pij (tpi / tpJ) J: uj (t)d t where the ratio tpi/tpi
converts the task from waiting time on node j to waiting
time on node i. As (pij Ly uj (t)d t) = L: uj (t)d t ,
this results in removing all of the waiting time St: uj(t)dt
from node j .

The quantity -pijuj(t - hij) is the rate of increase (rate
of transfer) of the expected waiting time (tasks) at time t
from node j by (to) node i where hij (hii = 0) is the time
delay for the task transfer from node j to node i.

The quantities rij (~ i i = 0) denote the time delay for
communicating the expected waiting time xj from node j
to node i.

The quantity sqVg = (E;=, xj(t - ~ i j) / n is the esti-
mate2 by the ith node of the average waiting time of the
network and is referred to as the local average (local esti-
mate of the average).

In this model, all rates are in units of the rate of change
of expected waiting time, or time/time which is dimension-
less. As ui(t) < 0, node i can only send tasks to other
nodes and cannot initiate transfers from another node to
itself. A delay is experienced by transmitted tasks b e
fore they are received at the other node. The control law
ui(t) = -Kisat(yi(t)) states that if the ith node output
zi(t) is above the local average E;=, zj(t - T V)) /n, then
it sends data to the other nodes, while if it is less than the
local average nothing is sent. The j t h node receives the
fraction hy pj i (tp, / t p j) ui(t)dt of transferred waiting time
L: ui (t)d t delayed by the time hij.

Model (1) is the basic model, but one important detail
remains unspecified, namely the exact form p;j for each
sending node i. One approach is to choose them as constant
and equal

)

(

where it is clear that pji 2 0, Pij = 1

B. Model Consistency

It is now shown that the model is consistent with actual
working systems in that the queue lengths cannot go neg-
ative, and the load balancing algorithm cannot create or
lose tasks; it can only move then between nodes.

‘This is an only an estimate due t o the delays.

583

B.l Non Negativity of the Queue Lengths

To show the non negativity of the queue lengths, recall
that the queue length of each node is given by qi(t) =
xi(t)/ tpi . The model is rewritten in terms of these quanti-
ties as

(3)
Given that zi(0) > 0 for all i, it follows from the right-
hand side of (3) that qi(t) = xi(t)/ tp, > 0 for all t > 0 and
all i. To see this, suppose without loss of generality that
qi(t) = xi(t)/tp, is the first queue to go to zero, and let tl be
the time when xi(t1) = 0. At the time t l , X i -p i = X i 1 0
by the definition of pi and - Cj”=, p u j (t - hij) 2 0 for all
time by the definition of the uj. Further, the term ui(t1)
is negative only if

PJ

(4)

By supposition (up to time t l) all the z j (t 1 - r i j) > 0
for j # i and zi(t1) = 0 so that ui(t1) = 0 as the right
side of (4) is positive at time tl . Consequently, at time tl
all terms on the right-hand side of (3) are non negative.
Further, xi@) cannot go negative in a neighborhood of tl .
For if it did, as the right-hand side of (4) is continuous, it
follows that

for some t E (t1,tl + 6) with 6 > 0. Therefore, ui(t) = 0
for all t E [tl, tl + a] and the right-hand side of (3) is non
negative for all t E [tl, tl + 61 which contradicts zi(t) < 0.
Note that tl + 6 can be taken to be at least as large as the
time at which some Z k goes to zero, that is, qk(tl+ 6) = 0
as the right hand side of (5) must remain positive for t E

If zi(t) goes positive after t l , then the above argument
is repeated at the next time a queue goes to zero. If xi(t)
remains identically zero in the interval (tl,tl+6), then the
argument is also similar in that at time t l + 6 , both x i (t l+
6) , Tk(t1+6) are then zero. As the remaining n-2 nodes are
still positive, the right-hand side of equation (5) continues
to hold with both xi and X k zero at time tl + 6 and one
again gets a contradiction if either xi or xk goes negative
in an interval (tl + 6 , t z) . Continuing in this manner, it
follows that qi(t) = xi(t) / tp , cannot go negative for all i.

[tl, tl + 4.

B.2 Conservation of Queue Lengths

It is now shown that the total number of tasks in all the
queues and the network are conserved. To do so, sum up

equations (3) from i = 1, ..., n to get

which is the rate of change of the total queue lengths on all
the nodes. However, the network itself also contains tasks
in transit between nodes. The dynamic model of the queue
lengths in the network is given by

n n
d P’ . ;tiqneti (t) = C s U j (t - hij) - %uj(t). (7)

j=1 t p j j=1 t P 3

Here qnet, is the number of tasks put on the network that
are being sent to node i. This equation simply says that
the j t h node is putting tasks on the network to be sent to
node i at the rate Puj(t) while the ith node is taking these
tasks from node j off the network at the rate pu j (t - hij).

Summing (7) over all the nodes, one obtains

P J

=3

(8)
Adding (6) and (8), one obtains the conservation of queue
lengths given by

In words, the total number of tasks which are in the sys-
tem (i.e., in the nodes and/or in the network) can increase
only by the rate of arrival of tasks &Itp, at all the
nodes, or similarly, decrease by the rate of processing of
tasks p z / t p l at all the nodes. The load balancing it-
self cannot increase or decrease the total number of tasks
in all the queues.

B.3 Stability of the Model
Combining the results of the previous two subsections,

one can show stability of the model. Specifkally, we have
Theorem: Given the system described by (1) and (7)

with A, = 0 for i = 1, ..., n and initial conditions ~ ~ (0) 2 0,
then (q,(t), qnet , (t)) + 0 as t + 00.

Proof: First note that the qnet, are non negative as

Under the conditions of the theorem, equation (9) becomes

584

Let V(t> Er=, (qz(t) + Qnet, (t)) , and, as the 47 (t) , qnet, (t)
are non negative, V (t) 2 0 and is equal to zero if and only
if q , (t) = O,q,,t,(t) = 0. (This is a time delay system so
(q z (t) , qnet, (t)) is not the state of the system [6]). Further,
as p2(q2(t)) = 1 for q2(t) > 0 and p,(q,(t)) = 0 if only if
q,(t) = 0, it follows that dV/d t = - Erzl p2(q,(t))/tp, 5 0.
This then implies that

is monotonically decreasing. As V (t) is bounded below, we
have V (t) 1. Vf 2 0, or

The quantity pi(qi(t)) is either 1 or 0 depending on whether
q i (t) is positive or zero, so pi(qi(t)) can be viewed as a
set of pulses of unit height and varying width. The inte-
gral lo" pi(qi(t))dt is finite by (13) which implies that the
widths of the unit-height pulses making up p i (q i (t)) must
go to zero as t --+ CO. So, even if a q i (t) (= zi(t)/tp,) con-
tinues to switch between zero and positive non zero, the
time intervals for which it is non zero must go to zero as
t -+ CO. Summarizing, the qi(t) are non negative, continu-
ous functions, bounded by the non negative monotonically
decreasing function V (t) , and the intervals for which the
qi(t) are non zero goes to zero as t -+ CO. Further, as

it follows that the time intervals for which the bounded
functions ui(t) are non zero must go to zero as t -+ CO.

Consequently, by equation (lo), qnet,(t) -+ 0 as t -+ CO.

We now show that the monotonically decreasing function
V (t) must go to zero, that is, lim+,w V (t) = Vf = 0.
Suppose not, so that Vf > 0. As qnet,(t) -+ 0, choose tl
large enough SO that 0 5 qnet, (t) < cVf for t > tl
where 0 < E < 1. Then

and
n

Cqi(t) 4 (1.- e) V, > o for t > t l .

This in turn implies that at least one of the qi(t) > 0 for
all t > tl and therefore E&, pt(qi(t))/tp,dt 2 min{l/tp,}
for all t > t l . By equation (l l) , we then have

i=l

As the right side of (14) eventually becomes negative, we
have a contradiction and therefore Vf = 0. As it has al-
ready been shown that qneti -+ 0 for all i , V(t) -i 0 then
implies that the non negative functions q i (t) -i 0 for all i .

111. SIMULATIONS
Experimental procedures to determine the delay values

are given in [7] and summarized in [8]. These give represen-
tative values for a Fast Ethernet network with three nodes
ofri j = r =200psecfori# j , r iz=O,andhi j = 2 ~ = 4 0 0
psec for i # j , hii = 0. The initial conditions were
zl(0) = 0.6, z~(0) = 0.4 and z3(0) = 0.2. The inputs
were set as A1 = 3p1, A2 = 0, A3 = 0, p1 = p2 = p 3 = 1.
The t,, 's were taken to be equal.

In this set of simulations, the model (1) is used. Figures
1 and 2 show the responses with the gains set as K =
1000 and K = 5000. To compare with the experimental
results given in Figure 4, Figure 3 are the output responses
with the gains set as K1 = 6667, K2 = 4167, K3 = 5000,
respectively.

0 8

061'

.. - - _I__

..
o h ____----

I

0.002 0.004 0.006 0.008 0.01
4.6 '

Tnm in sec%

Fig. 1. Constant p i j nonlinear output responses with K = 1000.

Fig.

0.002 0.004 0.006 0.008 0.01
4.6 '

lime in secs

2. Constant p , j nonlinear output responses with K = 5000.

585

0.3 1

0.1

0.2

is related to the number of tasks as xi(t) = qi(t)tpi where
t , is the average time to carry out a task. The continuous
time control law is

- i *‘

I
- v3

0 0.002 0 . m 0.008 0.m 0.01
lime in sew

Fig. 3. Nonlinear simulation with constant p, j and K1 =
6666.7; K 2 = 4166.7; K 3 = 5000

IV. EXPERIMENTAL RESULTS
A parallel machine has been built to implement an exper-

imental facility for evaluation of load balancing strategies.
A root node communicates with k groups of computer net-
works. Each of these groups is composed of n nodes (hosts)
holding identical copies of a portion of the database. (Any
pair of groups correspond to different databases, which are
not necessarily disjoint. A specific record, or DNA profile,
is in general stored in two groups for redundancy to pro-
tect against failure of a node.) Within each node, there
are either one or two processors. In the experimental facil-
ity, the dual processor machines use 1.6 GHz Athlon MP
processors, and the single processor machines use 1.33 GHz
Athlon processors. All run the Linux operating system.
Our interest here is in the load balancing in any one group
of n nodes/hosts.

The database is implemented as a set of queues with
associated search engine threads, typically assigned one
per node of the parallel machine. The search requests
are created not only by the database clients; the search
process also creates search requests as the index tree is d e
scended by any search thread. This creates the opportunity
for parallelism; search requests that await processing may
be placed in any queue associated with a search engine,
and the contents of these queues may be moved arbitrarily
among the processing nodes of a group to achieve a balance
of the load.

An important point is that the actual delays experienced
by the network traffic in the parallel machine are random.
Work has been performed to characterize the bandwidth
and delay on unloaded and loaded network switches, in or-
der to identify the delay parameters of the analytic models
and is reported in [7] [8]. The value T = 200 p sec used for
simulations represents an average value for the delay and
was found using the procedure described in [8]. The in-
terest here is to compare the experimental data with that
from the three models previously developed.

To explain the connection between the control gain K
and the actual implementation, recall that the waiting time

-

u(t) = -Ksat (y,(t))

where u(t) is the rate of decrease of waiting time x,(t) per
unit time. Consequently, the gain K represents the rate of
reduction of waiting time per second in the continuous time
model. Also, yz(t) = (q,(t) - (E,”,, qJ(t - ~ ~ ~ 1) /n) tp, =
r,(t)t,, where r,(t) is simply the number of tasks above
the estimated (local) average number of tasks and, as the
interest here is the case y,(t) > 0, consider u(t) = -Ky,(t).
With At the time interval between successive executions of
the load balancing algorithm, the control law says that a
fraction of the queue Kzrz(t) (0 < K, < 1) is removed
in the time At so the rate of reduction of waiting time is
-KZrl(t)tpr / A t = -K,y,(t)/At so that

This shows that the gain K is related to the actual im-
plementation by how fast the load balancing can be car-
ried out and how much (fraction) of the load is trans-
ferred. In the experimental work reported here, At ac-
tualIy varies each time the load is balanced. As a come
quence, the value of At used in (15) is an average value
for that run. The average time t,, to process a task is
the same on all nodes (identical processors) and is equal
10psec while the time it takes to ready a load for trans-
fer is about 5p sec. The initial conditions were taken as
q I (0) = 6000, qZ(0) = 4000, q3(0) = 2000 (corresponding to
~ i (0) = qi(0)tpi = 0.06,~2(0) = 0.04,~3(0) = 0.02). All of
the experimental responses were carried out with constant
p,j = 1/2 for i # j.

Figure 4 is a plot of the responses r,(t) = q,(t) -
qJ(t - T,)) /n for i = 1,2,3 (recall that yZ(t) =

rz(t)tp,). The (average) value of the gains were (K , = 0.5)
K1 = 0.5/75psec = 6667, K2 = 0.5/120psec = 4167, K3 =
0.5/100psec = 5000. This figure compares favorably with
Figure 3 except for the time scale being off; that is, the ex-
perimental responses are slower. The explanation for this
it that the gains here vary during the run because At (the
time interval between successive executions of the load bal-
ancing algorithm) varies .during the run. Further, this time
At is not modeled in the continuous time simulations, only
its average effect is represented in the gains Ki. That is,
the continuous time model does not stop processing jobs
(at the average rate t p z) while it is transferring tasks to do
the load balancing.

Figure 5 shows the plots of the response for the (av-
erage) value of the gains given by (K , = 0.2) K1 =
0.2/125psec = 1600,K2 = 0.2/80psec = 2500,K3 =
0.2/70psec = 2857. The initial conditions were ql(0) =

0.06,x2(0) = 0.04,x3(0) = 0.02). Figure 6 shows the
plots of the response for the (average) value of the gains

6000,q2(0) = 4000,q3(0) = 2000 (~ l (0) = ql(O)t,, =

586

0 5 10 15 20 25 30 35 40

“a (ms)

7wo

6wo

Mw

....

..,

..

.....

! ,
........-..... . -

I
0 5 10 15 20 25 30 35 40

llm 0“

Fig. 4. Experimental response of the load balancing algorithm. The
average value of the gains are (K z = 0.5) K1 = 6667,Kz =

Fig. 6. Experimental response o f the load balancing algorithm. The

4167, K3 = 5000 with constant p i j .

C o m m o n of locsl ”acking ~ - B Z on MdtlD1. n-3

average value of the gains are (K, = 0.3) K I = 2400,Kz =
7273, K3 = 2500 with constant pi j .

7000

6000

5wo

40W

f 3000
9 2ow

i
lDW0

k C 9 0

, I J
0 5 10 15 20 25 30 35 40

-3cm

mme (m)

ference on Decision and Control, December 2001. Orlando, FL
USA.
C. K. Hisao Kameda, Jie Li and Y. Zhang, Optimal Load Bal-
ancing in Distributed Computer Systems. Springer, 1997. Great
Britain.
H. Kanieda, I. R. El-Zoghdy Said Fathy, and J . Li, “A perfor-
mance comparison of dynanmic versus static load balancing poli-
cies in a mainframe,” in Proceedings of the 2000 IEEE Conference
on Decision and Control, pp. 1415-1420, December 2000. Sydney,
Australia.
J . D. Birdwell, J . Chiasson, Z. Tang, C. T. Abdallah, M. Hayat,
Z. Tang, and T. Wang, “Dynamic time delay models for load bal-
ancing Part l: Deterministic models,” in CNRS-NSF Wol-lcshop:
Advances in Control of Time-Delay Systems, Paris Fmnce, Jan-
uary 2003. Also, to appear in an edited book by Springer-Verlag,
Keqin Gu and Silviu-Iulian Niculescu, editors.
C. Abdallah, J. Birdwell, J. Chiasson, V. Churpryna, Z. Tang,
and T. Wana, “Load balancina instabilities due to time delays in -.

Fig. 5. Experimental response of the load balancing algorithm. The
= 0.2) K1 = 1600, K z =

parallel computation,” in Proceedings of the 3rd ZFAC Conference
on Time Delay Systems, December 2001. Sante Fe NM.

[6] J. Hale and S. V. Lunel, Introduction to Functional Diferential
Equations. Springer-Verlag, 1993.

[7] P. Dasgupta, Performance Evaluation of Fast Ethernet, ATM
and Myrinet under PVM, MS Thesis. University of Tennesse,

181 P. Dasgupta, J. D. Birdwell, and T. W. Wang, “Timing and
congestion studies under PVM,” in Tenth SIAM Conference
on Parallel Processing for Scientific Computation, March 2001.
Portsmouth, VA.

average value of the gains are
2500, K3 = 2857 with constant p i j .

given by (K , = 0.3) Kl = 0.3/125psec = 2400,Kz =
O.S/llOpsec = 7273, K3 = 0.3/120psec = 2500.

2001.

V. SUMMARY AND CONCLUSIONS

A load balancing algorithm was modeled as a nonlinear
time-delay system. The model was shown to be consis-
tent in that the total number of tasks was conserved and
the queues were always non negative. Further, the system
was shown to be always stable, but the delays do create a
limit on the size of the controller gains in order to ensure
performance (fast enough response without oscillatory be-
havior). Experiments indicated a correlation of the contin-
uous time models with the actual implementation. Future
work will consider the fact that the load balancing oper-
ation involves processor time which is not being used to
process tasks. There is a trade-off between using processor
timelnetwork bandwidth and the advantage of distribut-
ing the load evenly between the nodes to reduce overall
processing time.

REFERENCES
(11 E. Altman and H. Kameda, “Equilibria for multiclass routing

in mult-agent networks,” in Proceedings of the 2001 IEEE Con-

587

