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Abstract-Congestion control in the Available Bit Rate (ABR) 
class of Asynchronous h n s f e r  Mode (ATM) networks poses 
interesting challenges due to the presence of delays, magnitude 
and rate constraints, and additive disturbances. In  this paper, 
we consider a discrete-time fixed-structure controller for nn 
A'RWABR switch, and solve a robust tracking control problem 
in which the target is n threshold on the queue level. 

I. INTRODUCTION 

The transmission of multimedia traffic on the broadband 
integrated service digital networks (B-ISDN) has created the 
need for new transport technologies such as Asynchronous 
Transfer Mode (ATM). Briefly, because of the variability of 
the multimedia traffic, ATM networks seek to guarantee an 
end-to-end quality of service (QoS) by dividing the varying 
types of traffic (voice, data, etc.) into short, fixed-size cells 
(53 bytes each) whose transmission delay may be predicted 
and controlled. ATM is thus a Krmol Circuit (VC) tech- 
nology which combines advantages of circuit-switching (all 
intermediate switches are alerted of the transmission require- 
ments, and a connecting circuit is established) and packet- 
switching (many circuits can share the network resources). 
In order for the various Vc's to share network resources, 
flow and congestion control algorithms need to be designed 
and implemented. The congestion control problem is solved 
by regulating the input traffic rate. In addition, because of 
its inherent flexibility, ATM traffic may be served under one 
of the following service classes: 1) The constant bit rate 
(CBR) class: it accommodates traffic that must be received 
at a guaranteed bit rate, such as telephone conversations, 
video conferencing, and television. 2) The variable bit rate 
(VBR): it accommodates bursty traffic such as industrial 
control, multimedia e-mail, and interactive compressed video. 
3) The availuble bit rote (ABR): it is a best-effort class for 
applications such as file transfer or e-mail. Thus, no service 
guarantees (transfer delay) are required, but the source of data 
packets controls its data rate, using a feedback signal pro- 
vided by switches downstream which measure the congestion 
of the network. Due to the presence of this feedback, many 
classical and advanced control theory concepts have been 
suggested to deal with the congestion control problem in the 
ATWABR case [2], [lo]. 4) The unspecified bit rate (UBR): 
it uses any leftover capacity tu accommodate applications 
such as e-mail. 

Note that the CBR and VBR service categories, a traffic 

contract is negotiated at the initial stage of the VC setup, and 
maintained for the duration of the connection. This contract 
will guarantee the following QoS parameters: 1) Minimum 
cell rate (MCR), 2) Peak cell rate (PCR), 3) cell delay 
variation (CDV), 4) maximum cell transfer delay (maxCTD), 
and 5) cell loss ratio (CLR). This then forces CBR and 
VBR sources to keep their rate constant regardless of the 
congestion statns of the network. The ABR sources on the 
other hand, are only required to guarantee an MCR and an 
PCR, and thus can adjust their rates to accommodate the level 
available after all CBR and VBR traffic has been accommo- 
dated. In order to avoid congestion, the ATM Forum adopted 
a rate-based ABR control algorithm as opposed to a credit 
approach whereby the number of incoming cells as opposed 
to their rate is controlled [7]. This paper will then concentrate 
on the ABR service category since ABR sources are the ones 
to adjust their rates using explicit network feedback. In the 
original ATM forum specification, an ATM/ABR source is 
required to send one cell called a resource management (RM) 
cell for every 32 data cells. Switches along the path from 
the source to the destination then write into the RM cell 
their required data rate to avoid congestion. The destination 
switch then has information about the minimum rate required 
by all switches along the VC which is then relayed back to 
the ATiWABR source as a feedback signal which serves to 
adjust its own data rate. 

The earliest control algorithms for ABR consisted of set- 
ting a binary digit in the RM cell by any switch along the VC 
when its queue level exceeds a certain threshold [2]. This was 
then shown to cause oscillations in the closed-loop system. 
Other controllers were then suggested by various authors [51, 
[6], to address this problem. Most of these controllers are 
either complex or did not guarantee the closed-loop stability 
(in a sense defined later). 

In addition, one of the limiting factors of these earlier 
proposed controllers was that the ABR bandwidth needed to 
be known in the implementation of the control algorithm. 
This however poses a problem in multimedia applications 
where the ABR bandwidth is bursty and is effectively the 
remaining available bandwidth after the CBR and VBR traffic 
have been accommodated. In [lo] this particular issue was 
dealt with using a Smith predictor which then considered 
the available ABR bandwidth as an unknown disturbance. 
While this controller had many desirable properties, it only 
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guaranteed stability in an appropriately defined sense hut had 
no optimality guarantees. In addition, the delays encountered 
along with the number of AEIR sources were assumed known, 
although the earlier tech report [71 did not require the delays 
to be exactly known. In [91, robust controllers were designed 
when both the number of ABR sources and the delays were 
uncertain. 

In this paper, we consider a discrete-time model for 
an ATWABR switch and source which was presented in 
[5] and attempt to control the resulting nonlinear system. 
The technique developed is based on the use of Finsler's 
lemma and a generalized sector nonlinearity description. 
Considering quadratic Lyapunov functions, the use of 
Finsler's lemma allows us to express stability and invariance 
conditions without explicitly substituting the dynamic 
system equations into the Lyapunov function. Such an 
approach corresponds to weighing the dynamic system 
equations through multipliers which represent additional 
variables [12], [ I  I]. The introduction of these new variables 
increases the degrees of freedom in the problem, and relaxes 
the conditions of applicability. 

A =  
Notations. For two vecton x. y of R", the notation x y 
means that x(,) - y(,) 2 0, V i  = 1 , .  ... n. A(,)  denotes the ith 
row of matrix A.  For two symmetric matrices, A and E, A > B 
means that A - B is positive definite. A' denotes the transpose 
of A. sat(.4,,A,,(v) denotes the scalar saturation function: 

( A, if Y < A ,  

0 0  
0 0  

. . . .  

. . . .  
0 ... - 

11. PROBLEM FORMULATION 
As in IS] and [l], we consider the closed-loop discrete- 

0 0 . . . . . .  0 
1 0 . . . . . .  0 

. . . . . . . . . . .  

. . . . . . .  . . . .  

. . . . . . . . .  1 0  - 

controller structure. In (1)-(2), the numbers J ,  K and the 
parameters a,, & have to be found such that closed-loop 
stability and some performance levels are attained [4]. In 
[4], the author showed that when considering the linearized 
model of system (1)-(2) it is sufficient to consider J = 1 
and K = d in order to completely place the closed-loop 
poles. Hence, we consider (1)-(2) with J = 1, K = d but 
without removing the saturation functions as was done in [ 5 ] .  
Moreover we assume that A(n-df) is equal to R(n+l-d). 

Consider both the extended state and disturbance vectors 

; E31 = 

and define the following matrices 

0 0 . . . . . .  0 0 0 
1 0 . . . . . .  0 0 0 

0 . 1  
0 0  
. .  . .  . .  
. .  . .  . .  
0 0  - 

G = [  --(yo 

for some X and W belonging to the set S(G, BA, CA): delay from the source to the switch and the saturation level 
B reDresents the buffer size. The saturation level C is the 
maximum E R  and Qo is the desired buffer occupancy. The S ( G , P , C A ) =  { X E W d + 3 , i Y E R ~ ; O 5 G X  

B 

+&W< [ %]}  (6) 
ABR source is greedy if the source's rate A(n - df) is equal 
to R(n+l-d), where d = df +db is the round trip delay (db 
is the feedback delay from the switch back to the source). 

Note that equation (1) describes the plant dynamics, i.e. 
the state of the buffer, and equation ( 2 )  defines a pmicular 

1-+21 

where A is a diagonal matrix whose diagonal elements A(t,,), 
denoted by A(*),  are such that 0 5 A(z) < 1. 
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The problem we aim to solve is summarized as follows. 
Problem I: Determine a mauix IK, a set of admissible 

initial Conditions SO, and a set of admissible disturbances 
DO such that: 
1) The closed-loop matrix A + I 5 1 6  is asymptotically stable. 
2) The closed-loop trajectories remain bounded for any 
X ( 0 )  E SO and any admissible disturbance W(n)  E Do, 
Yn. 
3) The steady state buffer occupancy is equal to the desired 
threshold Qo. 

We consider that the saturation functions are effectively taken 
into account, that is, the nonlinear behavior of the closed- 
loop system is studied. The implicit objectives in Problem 1 
consist of optimizing the sue of the region of stability and/or 
the size of the region of admissible disturbances. 

111. PRELIMINARY RESULTS 
Satisfying point 3 in Problem 1 allows us to study the 

existence of possible equilibrium points corresponding to the 
case W(n)  = We where We is a constant value. 

Leniim I :  Suppose that there exists an equilibrium point 
X ,  for system (3). Then this equilibrium point satisfies: 

R,(n - k) = R,(n - k + 1) = Re = pe, k = 0, ..., d (7) 
Qe(n) = Qe(n - 1) = Qe = QO (8) 

(9) 

provided that the following two conditions hold 

Qo. Hence, the steady-state buffer occupancy will be equal 
to Q. (i.e. different from Qo). Furthermore, in this case, 
condition (10) reads: 

Thus, from Lemma 1 and Remark 1, we can consider 
another representation of model (1):(2) and therefore of 
model (3). Towards this aim, consider the following vectors 

1 :!:’-;I”” Qo 1 

L R ( n - d ) - p e J  
which correspond to a change of variables around the equi- 
librium point X,, and define the matrix 

B3= [ -1 0 0 0 ... 0 ] ’ E R d + 3  

Thus, the closed-loop system under consideration reads: 

Y ( ~ + ~ ) = ( A O + B I ~ K ) Y ( ~ ) + B ~ Y ( ~ ) + B ~ @ ( ~ )  (14) 

where A0 = A + BIIR, Bo = 

ments X ( i )  are such that 0 I 
satisfies the following sector condition 

< 1, the nonlinearity @(n), 

(15) @(n)‘ [@(n) + A  (GY(n) + B ~ v ( n ) ) ]  I 0,Yn 
for some Y and Y belonging to the set S(6, A): 

Proof. Relations (7) to (11) are obtained by lettin X, n + Is\ in 1) = X,(n) = x,, W(n)  = W,(n) = we = 

(3), and by assuming that this equilibrium point is in the 
region of linearity of the closed-loop system (3). Indeed, it 
is sufficient to solve X, = (A + B1G)X, + BIBzWe with 
Qe = 0. 0 

Remark I :  The conditions of Lemma 1 are consistent with 
those given in [5 ] .  Moreover, in general pe is not equal to 0, 

therefore condition (9)  implies that C p k  = 0.  his equality 

implies that pd is computed from the last d entries as: 

d 

k=O 

d-1 

k=O 

Renmrk 2: If we do not require that b d  verifies (12) then 
_I 

pflkfk 
the equilibrium point Q. is such that Q, = Qo - - # 

Remark 3: By considering that the closed-loop system is 
linear (i.e., @(n) = 0) and by considering that the service 
rate ~ ( n )  is constant (i.e., v(n) = O), one obtains the same 
system studied in [5] .  

Remark 4: If we work in the context of Remark 2, the 
closed-loop system defined in (14) is obtained by replacing 
Qo by Q. in the definitions of Y(n)  and of @(n) and (16). 

IV. MAIN RESULTS 

Some conditions in terms of matrix inequalities are now 
presented in order to guarantee that the closed-loop system 
(3) satisfies conditions 1 and 2 of Problem 1 statement. More- 
over, and in order to simplify the statement of the results, we 
assume that the constraints in (16) are symmetrical, that is, 
we let B = 2Q0 and C = 2pe, 
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A. Results without structural conditions on K 
We are working in the context of Remarks 2 and 4. 
Prupusitiuii I: If there exist matrices of appropriate di- 

mensions P = P‘ > 0, F ,  C, H, L, K, diagonal positive 
matrices T and A, positive scalars y, UO, b and w verifying’ 

(17) 

with r~ = -bP+F(Ao+B12K)+(Ao+B1zP)’F’, h = 
C(Ao + BizK) - F‘, A13 = P - G - G’, A l 4  = H(Ao + 
B12K) + BiF’ - TAG, A15 = -H + BiC‘, A16 = -2T + 
mi + B;H’, A17 = B$F’ + L(Ao + BizK), A& = -L + 
IBiG‘, AI, = LB1+B!3Ht-BbAT, A110 = LB3+B$L‘-w, 
then 
(a) the gain K is such that A + B I G  is asymptotically stable, 
(b) the closed-loop trajectories remain bounded in the set 
&(P,y )  = {Y E Wd+3; Y’PY 5 y-’} for any admissible 
disturbance satisfying --vo 5 v(n) 5 uo, 
(c) the steady-state occupancy is equal to Qo - eT 
with e = [ 0 0 1 ._. 1 1’. 
Proof. Consider the quadratic function V(n)  = Y(n)’PY(n) 
with P = P’ > 0 and the following definitions: 

If 

are satisfied, then all the closed-loop trajectories initiated in 
&(P,-/) = {Y E Wdt3; Y’PY 5 y-’} remain in it for 
any admissible disturbance satisfying u(n)’u(n) = v(n)’ 5 
U;. Indeed, letting n = 0 in (23) we have that if V(0)  = 
Y’(O)PY(O) 5 y-’ then also V(1) = Y’(l )PY(l)  5 y-’. 
Then we can go on and show that V ( n )  = Y’(n)Pl’(n) 5 
y-’ for all n > 0. 

Then the first inequality in (23) is equivalent to: 

E‘QE 5 0 such that BE = 0 , t  # 0 (24) 

‘The symbol +stands for a symmetric block in  the manix. 

where T is a positive definite, diagonal matrix. Now, applying 
Finsler’s lemma [12], it follows by using inequality (15) that 
if there exist a matrix R such that 

where T is a positive definite, diagonal matrix, then for 
all Y, U E S(G,A) the first inequality in (23) is verified. 
Thus, provided that relations (17) and (18) are verified and 
Y, U E S(G, A), inequality (25). and as a consequence, (23) 
is verified. 

Furthermore, if relation (21) is satisfied, the bounds of the 

under the constraints -vn < u(n) < vn are well defined. 
~ I -  I _ . -  

Finally, from the definition of 6, if relations (19), (20) and 
(21) are verified, then &(P,y) C S(G,A) provided that v is 
such that -vo I u(n) I vo. 

Hence if all the inequalities of Proposition 1 are verified, 
we can conclude that: 

when U # 0, &(P,y)  c S(G,A) is a positively invariant 
set with respect to the trajectories of the closed-loop system 
for Y(0) E &(P, y) C S(G, A) and any admissible u(n). 

when U = 0 (constant service rate), we have that for any 
Y(0) E &(P,y) c S(G,A), V(n+ 1) < V(n)  and therefore 
Y(n) + 0 as n + 00. Hence, X ( n )  -+ Q, which, from 

0 

In the matrix inequalities of Proposition 1, some nonlin- 
earities appear due to the product between the multipliers 
( F ,  G, H, L )  and the gain K, to the product between T, 
A and K, and due to the product involving UO. However, it 
is important to note that from (17), that G + G’ > P > 0 
and therefore matrix G must be nonsingular. Hence, we can 
investigate a suitable choice of multipliers with an adequate 
change of variables in order to simplify a major part of these 
nonlinearities. The following corollary, which is a particular 
application of Proposition 1, is provided in this case. 

Corollary I: If there exist matrices of appropriate dimen- 
sions V = V‘ > 0, S, Z, diagonal positive matrices D and 
A, positive scalars y, UO, b and w verifying 

Remark 4, implies that point (c) is satisfied. 
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vi = Qe - (1 - X(i))vo 2 0 (30) 

0 5 A < I z  (31) 

with N I  = -6V+AoS‘+SAb+B12Z+Z’B;z, NZ =&SI+ 
B12Z- S ,  N3 = V - S - S i ,  N4 =OB; - A  WS’- 

Z ,  NS = DB;, N+j = -2D, N7 = B;, Ns = BL, 
[:I .[:I 

Ng = -B& N10 = -U, then 
(a) the gain K = Z(S’)-’ is such that A + BIG is 
asymptotically stable, 
(b) the closed-loop trajectories remain hounded in set 

y-I} for any admissible disturbance satisfying --YO 5 

(c) the steady state occupancy is equal to Q, = Qo - 
(Ke-l)p. with e =  [ 0 0 1 _.. I]‘. K(e-l ,+a) 

&(S-’V(S‘)-’,y) = {Y E P + 3 ;  Y’s-’v(s‘)-’Y 5 

v(n) 2 vo. 

The following comments apply to the previous results: 
As opposed to the classical approach [15] where K = 

ZW-’ with W-’ = P, here the state feedback gain K is 
computed from matrix S (P = Z(S’)- ’)  which needs not 
be positive definite. 

The matrix V which allowed us to define the Lyapunov 
matrix P ( P  = S-’V(S’)-’) is a decision variable. Such a 
fact allows us to consider different matrices V (and therefore 
implicitly different matrices P )  in other LMI constraints, for 
example, to deal with the regional assignment of the poles 
of the closed-loop system [14]. 

B. Results wifh structural conditions on K 
According to Remark 1, the gain K can be written as: 

iK = & + er,@ (32) 

with i& = [ o  0 1 o _ _ _  __. 01 E @X(d+3),  K~ = 
-a0 -U1 - P O  -PI ... - P d - l ]  E % l X ( d + z ) , @  = 

0 1 0 0 ... ... 0 
1 0  0 0 ... ... 0 

0 O l  

0 0 ... ... ... 0 1 - 1 1  
us from the definition (32) of IC, the problem of designing 

the gain K consists of designing the gain PI, since 4 is 
fixed. A very important fact is that the synthesis problem 
is now a static output design problem and no more a state 
feedback design problem due to the presence of matrix C. 
Note that in this case the closed-loop system reads: 

Y(n+1) = (Ai +B12~1@)Y(n)+B3v(n)+BiP(n) (33) 

with A1 = Ao +BIZ&. 
A result equivalent to Proposition 1 in the current case 

can be stated by replacing lK by I& + Pic. The presence 
of matrix C implies that an equivalent result to Corollary 1 

cannot be directly stated. In order to overcome this difliculty, 
we consider the following modifications. First, since matrix 
@ E R(d+2)x(d+3) is full row rank (Tank(@) = d +2) there 
always exists a matrix N E Rix(d+3) such that matrix A 1  = 
[ @’ N‘ 3’ is non-singular. For example a trivial solution is 
N = [ O  0 ... ... ... 0 0 l ] ~ W ’ ~ ( ~ + ~ ) . F r o m  
this non-singular matrix A 1  we can use the following change 
of variables: F(n)  = [ ] Y(n) = AlY(n), which gives 

the augmented closed- oop system: 

i.(n+l) = ( A I + &  [ K1 0 ])F(n)+B3v(n)+B1P(n) 
(34) 

Hence, relative to this system our objective consists in being 
able to compute a state _feedhack Ikl with a structural con- 
straint since one wants K1 = [ Pi 0 ] ,  Such a constraint 
can be linearly treated. At this stage, we can consider some 
changes of variables as in Corollary 1.  

Cumllary 2: If there exi$ matrices of appropriate dimen- 

sions V = I/’ > 0, S = ] , z = [ z ,  0 1 ,  
- - A . .  diagonal positive matrices b A d  A, positive scalars y. uo, 

6 and U verifying relations of Corollary 1, in which Q, has 
been replaced by Qo. then 
(a) the gain K = Z(S’)-’ is such that A + BIG is 
asymptotically stable, 
(b) the closed-loop trajectories remain bounded in set 

? - I }  for any admissible disturbance satisfying --vu 5 

(c) the steady state occupancy is equal to Qo. 

E(S-’V(S’)-’,y) = {Y E @+3; Y’s-iv(S’)-lY 5 

4 n )  5 vo. 

The structural constraints imposed on the matrices Z and 
S induce more conservatism than in the state feedback case. 
Indeed the problem arises from the fact that the output 
feedback gain is dependent on a state transformation whose 
choice is still an open problem. In fact, there is no particular 
difficulty in choosing a matrix N such that A4 is non-singular, 
but in no way guarantees that a feasible solution to the set 
of matrix inequalities (of Corollary 2) will be obtained [3]. 
Other approaches could be investigated to deal with this 
output feedback problem in a less conservative way 1131. 

C. Robustness issues 

Suppose that d is uncertain (constant hut unknown integer) 
hut known to lie in a given interval defined as follows: 
d,i, 5 d 5 d,,, where d,i, and d,, are known positive 
integers. Hence, the delay d can take d,, - dmin + 1 
integer values (the first value being d,i, and the last one 
d,,). For each of these d,, - dmi, + 1 values, we can 
associate d,, - &in + 1 closed-loop systems. In this case 
the problem consists in being able to simultaneously stabilize 
the &,, - d,i, + 1 systems and therefore to solve Problem 
1 with respect to these d,,, - d,i, + 1 systems. 
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V. EXAMPLE AND COMPUTATIONAL ISSUES 

Some conditions of Corollaries 1 or 2 are bilinear in 
decision variables 6, V ,  A, S, 2, uo due to products between 
them. An interesting way to overcome 'the difficulty of 
directly solving BMI conditions consists in using relaxation 
schemes: that is, to fix some of the variables and to search 
the other ones. Notice that in this case the relations become 
linear. Moreover, the implicit objectives are to maximize 
the region of stability of the closed-loop system and/or 
the region of admissible disturbances. Fmm Proposition 1, 
Corollaries 1 or 2, the region of stability associated to 
the closed-loop system (14) is the ellipsoid &(P,y) = 
{Y E !Rd+3; Y'PY 5 y'}, whereas the set of admissible 
disturbances u(n)  is given through the positive scalar uo. 
By notin that the volume of the ellipsoid is proportional 

d e t ( y ) ,  it is then possible to maximize its size by 
minimizing the function log(det(y2')). Hence, depending on 
the weight that we want to give to the set E(P, y) or to the 
set of admissible disturbances u(n), one can consider the 
following optimization problem: min{Pl((d + 3) log(y) + 
log(det(V)) - 2 log(det(S))) +&ug} for which relations of 
Corollaries 1 or 2 are the constraints and the P,'s are tuning 
parameters. 

Example I :  Consider an ATM network with a bandwidth 
of 100 Mbps and apply our controller to a switch located at 
a distance of 500 Km from the source; with these values of 
the parameters the round trip delay d = df + db amounts to 
5ms [4]. We assume that the state of the switch is updated ev- 
ery 200 cells (the length of each cell in the ATM networks is 
equal to 53 bytes), which corresponds to 0.848ms; therefore 
the delay in terms of computation cycles is d = 6.  We fixed 
Qo = 200, pe = 10. The controller guarantees a steady- 
state buffer occupancy Q. = 86 and a region of admissible 
disturbances with uo = 0.9. Figure 1 shows the controller 
performance in the presence of a constant p = pe in terms 
of queue length (QL) and explicit rate (ER). 

8- 

P 

U 
a .o m m .c m n 0 .= 

T-I-8 

Fig. I .  Controller performance 

VI. CONCLUSIONS 

This paper presented a nonlinear, discrete-time model of 
an ABWATM switch and showed how queue saturation may 
k incorporated directly into the control design step. The 

resulting fired-structure controller is simple, implementable, 
and robust. 
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