
Proceedin@ of the 42nd IEEE 
Conference on Decision and Contml 
Maui, Hawaii USA, December 2003 FrAPI-3 

Robust Mobile Robotic Formation Control Using Internet-Like Protocols 

R. Sandoval-Rodriguez*, C.T. Abdallah**, 
P.F. Hokayem**, and E. Schamiloglu. 

Electrical & Computer Engineering Department 
MSCOl 1100 

1 University of New Mexico 
Albuquerque, NM 87131-0001 

{rsandova,chaouki,hokayem.edl]@eece.unm.edu 

Abslract-This work presents an Internet-Like Protocol 
(ILP) to coordinate the formation of n second-order agents 
in a two dimensional (2D) space. The trajectories are specified 
trough via points and a desired formation at each point. A basis 
for the proof of convergence is given using Lyapunov second 
method. Simulink is used to \erify the response of the agents 
for a variety of desired trajectories. The proposed algorithms 
are robust in the sense that they can accommodate changes 
in the formation of the agents and more importantly, changes 
in the number of agents as some of them drop of or join the 
formation. 

I. INTRODUCTION 
The coordination and formation of multiple agents is a 

problem of particular interest to numerous research groups 
[21, [SI, [51, [I]. Applications of such research abound 
in space (satellite formation), military (remotely-operated 
clusters of vehicles) and civilian applications (teleautonomy). 
The problem of distributed coordination and control of 
such agents has been theoretically studied using various ap- 
proaches. In [Z], a graph-theoretic approach was presented to 
explain the behavior of n particles in the plane in an attempt 
to justify the model presented in [II] ,  which had proposed 
a discrete-time model illustrating the heading alignments of 
the n particles. Graph theory was also utilized in [ 8 ]  to 
define cost functions that govern the movement of the n 
systemdagents. In [51, virtual potentials were discussed as 
an analysis tool, while in [l]. local sensing and minimal 
communication was the main focus of the research. 
In this paper we present a different approach to the distributed 
control and coordination problem, inspired by the Internet 
congestion control protocols [91. We formulate the coordina- 
tion and control of various agents as a problem of competing 
for a common resource. Despite such selfish behavior, it has 
recently been shown [3] that all users share the resource 
proportionally and indirectly cooperate to maximize the 
global utility of all users. The supervisor of such behavior 
is a master which sets a price to be incurred by a user as 
a function of the resource usage and resource capacity, then 
transmits this price to the users. By doing so, all users receive 
the same feedback price, and the communication overhead 

R. Sandoval-Rodnpuez IS supported by Canacyr. Mexico, and by NSF- 

** C.T. Abdallah and P.F. Hokayem research is panially supported by 
0233205 

NSF-0233205. an by HP Mobility Grant UNM 2003. 

R. H. Byme 
Intelligent Systems and Robotics Center 

Sandia National Labs 
PO Box 5800 

Mail Stop 1005 
Albuquerque, N M  87185-1005 

rhbryne@sandia.gov 

is significantly reduced. The purpose of this paper is to 
show exactly how such algorithms may he adopted to the 
coordination and control of physical agents, and in particular 
to the case of two-dimensional mobile agents. Moreover, we 
illustrate via simulation that such algorithms are robust to 
changes in the numbers of agents: if a particular robot (or a 
group of them) drops out of the formation or if others join 
the formation, the group continues on a stable trajectory. 
This is similar to the behavior of a network of computers 
which remains connected despite the fact that computers are 
dropping in an out of the network all the time. 

11. THE ILP FORMATION COORDINATOR 

In this section we discuss how Internet-Like Protocols 
(ILP) are adapted to our formation and coordination problem. 
In order to implement the formation coordinator we use 
the results of [4], [7] which were adopted in [9]. to deal 
with n users sharing a resource of size C. The users update 
their resource usage according to a non-negative feedback 
signal called “price” of the resource, where a low price 
indicates resource availability while a high price reflects 
resource shortage. An equilibrium point is reached when the 
users share proportionally in the resource. These results may 
be applied when a group of users or agents is required to 
converge to a formation and follow a given trajectory in the 
plane. 
For this particular application; we interpret the sum of 
positions in the plane as the resource for which the agents are 
competing. For the sake simplicity, we assumed that the axes 
in the plane can be decoupled and managed separately, and 
thus we use the system analyzed in [91 for each axis in the 
plane. Figure 1 shows a block diagram of the ILP coordinator 
for one axis. The main controller reads the positions of 
the agents in the corresponding axis, then computes and 
broadcasts the feedback price to all agents. In turn, each 
agent reads the feedback price and computes the next target 
position in the corresponding axis. 
Let us focus our attention on the coordinator for one axis (x 
axis) of the plane, since the coordinator for the other axis (y 
axis) is basically the same. The state variable x, represents 
the actual position for the i th agent in the x axis, p ,  is the 
feedback price for the 5 axis, a,, is a constant parameter 
which defines the proportion of the resource assigned to the 
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Fig. 1. Block d i a p m  of one axis for the ILP coordinator. 

agent. In fact, this proportion is the position on the z axis for 
this agent in the desired formation. The parameter azr also 
defines the speed of convergence to the equilibrium point, as 
we will show later. 
The ILP coordinator then has the following structure (see 
PI).  

The resource C, is the sum of the final positions of the agents 
in the z axis for the desired formation. The parameter T~ is a 
positive constant which also defines the speed of convergence 
to the equilibrium point (formation). In addition, as shown 
in the linearization section in 191, yZ specifies the root locus 
for two of the eigenvalues in the linearized system matrix. 
The value of h should thus be properly selected to avoid 
overshoots in the response. 
The equilibrium point of ( I )  is given by 

As we can see from equation (2) ,  the ratio a=,/C:=, aZ1 
defines the proportion of resource C, allocated to the i th 
agent. We can obtain the same ratio by scaling the values 
of a,, for all i .  However, as shown in equation (12) of [9], 
the location of n - 1 eigenvalues of the linearized system is 
defined by the ratio a,,/C,. Thus, a larger value of 
a,, results in a faster convergence. 
In order to show the stability of the equilibrium point, we 
first translate the equilibrium point of (2) to the origin with 
the following change of variables 

wi( t )  = z;(t)  -zt, 
w m ( t ) = p , ( t ) - p Z ,  m = n + l  (3) 

for 1 5 i 2 n 

Given that w;(t) = i;(t), then 

~ 
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where S P E:=, aZi .  We have removed the subindex 5 
to avoid confusion, with the understanding that the stability 
analysis applies for both axes. Simplifying, 

Theorem I: The system ( 5 )  is asymptotically stable for 
P S t )  > 0. 

Proof: To analyze the stability of system (5). we use the 
quadratic Lyapunov function 

(6) 
1 
2 

V(w) = -wTPw 

where P > 0 is an mxm diagonal matrix. Then V(w) > 0 for 
w # 0, and V(0)  = 0. Taking the time derivative of V(w) 
we obtain 

m 
1 .  
2 

V ( w )  = - [wTPw + WTPtiJ] = CWiPitiJi (7) 
i=l 

Expanding the terms 

n S  i2.C 
V ( w )  = ( -  -P;w?(t) - P i Z w i ( t ) w m ( t )  c S 

i = l  

We can cancel out the cross product terms hy choosing Pi = s, for 1 5 i 5 R, and Pm = 1, thus simplifying 

In order to ensure that V ( w )  < 0 we need the term inside 
the parentheses to be positive, leading to 

By definition, a;, y, S = E:=, a;, and C are positive, and 
since 

(11) 
S 

%(t )  + - C = P d t )  

then, the system (5) is asymptotically stable for p.(t) > 0. 

U 

As we can see from the previous proof, the agents will 
converge asymptotically to the desired formation. By prop- 
erly selecting the parameter 7.. the convergence may be 
made faster, by just avoiding the undesired overshoot. A more 
detailed proof of stability in the presence of time delay in 
the transmission of the signals is presented in [9].  



111. AGENT DROPPINGIADDING ROBUSTNESS 
A. Dropping one agent 

First we present the case when the j t h  agent suddenly stops 
moving and therefore is unable to complete the formation. 
Let ( X d , Y d )  the point in the plane where the agent stopped 
moving. Then the new equilibrium point for the x axis will 
be at: 

a=, S,(t) = 0 = -xc(tjp,(tj +a,, ,  x: = - for i # j 
PZ 

n n 

Pdt )  = 0 = % [ [ C Z d t )  - C.], Ex: = c, (12) 
"=I * = I  

Expanding the second equation of (12) with the substitution 
of the first equation, yields 

where we have substituted X d  as the equilibrium or final 
position for the j t h  agent, then solving for p; we get 

Substituting (14) in the first equation of (12). results 

a d G  - z d )  

a,, - a,, 
x: = 

Considering C; = C,-X, 3) o and s- = 
0, W e  can rewrite (15) and (14) as 

> 

S- p* = - 
= c; 

We can see from (16) that the equilibrium condition for 
all the agents hut the j t k ,  is affected by the same factor, 
maintaining the formation shape. However, the formation will 
suffer a slight scaling, contraction or expansion, according 
to the initial positions of the agents. Also the equilibrium 
condition of (16) is very similar to the one in (2). such that 
the the proof of convergence for the algorithm with one agent 
dropping is straightforward and presented in detail in [lo]. 
The new equilibrium condition for the y axis can be obtained 
in a similar fashion. 

Expanding the second equation of (17) with the substitution 
of the first equation. yields 

n n 1 
xf + x; = C, = [ [C a,< + a,j] . ; ( 1 8 )  

i=l < = I  PZ 

solving for p: we get 

Substituting (19) in the first equation of (17), results 

S+ p' = - 
= c z  

Comparing equation (21) with equation (2). we can see that 
the equilibrium positions of all the agents are scaled by the 
same factor, and the formation will then keep the shape but 
will suffer a slight contraction. The convergence proof for the 
algorithm with the addition of one agent is also presented in 
[lo]. The extension for the y axis is also straightforward. 
The next section shows simulation results of both situations 
analyzed in this section. 

IV. SIMULATION RESULTS 

A. Dropping one agent 

In this subsection we will show first the Simulink simnla- 
tion of one agent dropping the formation. The commanded 
formation consists of six agents completing a triangle-like 
shape. Figure 2 shows the results when the agent in the right 
vertex of the triangle removes itself from the formation, and 
the agents were commanded to complete the formation in 
20 seconds. Five seconds after the start of the trajectory, the 
agent is forced to stay in its current position. Despite the loss 
of one agent, the remaining agents keep the formation and 
complete the trajectory in the commanded time. 

B. Adding one agent 

where j = n + 1. The equilibrium point is now 

B. Adding one agent 

Figure 3 shows the simulation when a new agent joins an 
original wedge formation with five agents. The new agent 
takes the center position in the wedge, changing the forma- 
tion to a triangle formation, and the agents are commanded 
to reach the final formation in 20 seconds. The joining takes 
place ten seconds after the Stan of the trajectory. Despite the 
addition of a new agent, the other agents keep the formation 
and complete the trajectory in the commanded time. 

The othcr case is when a j t h  agent joins the formation, 

azi 
P: 

xi(t)pz(t) + 'f = - for j 

@Z(t)  =o=r~[Cxi(t)+x~,(t)-c,], x x : + x ;  =c, 
(17) 

ii(t) = 0 = - 
n n 

i=l i=l 
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signal, and need not communicate amongst each other. 
Our current work focuses on implementing our coor- 

dination algorithm on a number of indoor mobile robots 
specifically modified for this purpose. 
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Fig. 3. Five agents completing a wedge formation, with the addition 
of a new agent the middle of the trajectory 
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