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Abslracl-This paper presents two machine learning based 
algorithms for CDMA power control. The Least Squares Sup 
port Vector Machine (LS-SVM) algorithms classify eigenvalues 
estimates into sets of power control commands A binary LS- 
S V M  algorithm generates Iixed step power control (FSPC) 
commands, while the one vs one multiclass LS-SVM algorithm 
generates estimates for k e d  set power control. 

I. INTRODUCTION 
Power control is a critical component in CDMA cellular 

systems. Power control combats the “near-fat” effect by 
adjusting the transmit power of each mobile. This tech- 
nique reduces the multiple access interference and if the 
system capacity is within the set limits the, desired signal- 
to-interference ratios (SIRS) are achieved at all base stations. 
Research in the power control field covers centralized, dis- 
tributed, and stochastic power control [1],[2],[3]. In most of 
the published research however, it is assumed that the uplink 
channel gain is known, and no limitations are placed on the 
word-length and update rate of the transmitted power control 
command. 

The IS-95 and cdma2000/3G systems have an 800 bps 
up/down power control command rate; the single bit power 
control command is thus sent to the mobile station every 
1.25 milliseconds [4]. This limits the options with regards to 
power control systems, but the design reduces the problem 
to that of generating a fixed-step power control command. 
Standard power control systems implemented in cellular 
systems use signa-to-interference ratio (SIR) estimates, hit 
emor rates (BER), or frame error rates (FER). Many of 
the published power control algorithms assume that these 
estimates are available and accurate. 

The algorithms presented in this paper require only the 
set of eigenvalues from the sample covariance matrix of the 
received signal; the signal subspace dimension and power 
estimates are not required. The machine learning algorithm 
classifies the set of eigenvalues into a SIR set which then 
determines the power control command. Both binary and 
multiclass machine learning algorithms are developed to 
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solve this power control classification problem. The two 
types of algorithms require unique training sequences, hut 
the optimum performance of both algorithms is achieved with 
the same kernel and test parameters. 

11. MACHINE LEARNING BASICS 
A major machine learning application, pattem classifi- 

cation, observes input data and applies classification rules 
to generate a binary or multiclass labels. In the binary 
case, a classification function is estimated using inputloutput 
training pairs,(xj,y,) i = 1.. . n, with unknown probability 
distribution, P(x,  y), 

(Xl,Yl), . . . , (XnrYn) E W N  x y, (1) 
y, = {-1,+1}. (2) 

The estimated classification function maps the input to a 
binary output, f : W N  -t {-l,+l}. The system is first 
trained with the given inputloutput data pairs then the test 
data, taken from the same probability distribution P(x ,  y), is 
applied to the classification function. For the multiclass case 
Y E Wc where Y is a finite set of real numbers and C i s  the 
size of the multiclass label set. In multiclass classification the 
objective is to estimate the function which maps the input 
data to a finite set of output labels f : RN -+ 6 (W”) E Wc 

Support Vector Machines (SVMs) were originally de- 
signed for the binary classification problem. Much l i e  
all machine learning algorithms SVMs find a classification 
function that separates data classes, with the largest margin, 
using a hyperplane . The data points near the optimal hyper- 
plane are the “support vectors”. SVMs are a nonparametric 
machine learning algorithm with the capability of controlling 
the capacity through the support vectors. 

The SVM maps the input space into a higher dimensional 
feature, F ,  space via a nonlinear mapping. kernel operation 

r W N + F  (3) 
r ( X ) .  (4) 

The data does not have the same dimensionality as the feature 
space since the mapping process is to a non-unique general- 
ized surface [5]. The dimension of the feature space is not as 
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imponant as the complexity of the classification ‘functions. 
For example, in the input space, separating the inpudoutput 
pairs may require a nonlinear separating function, but in a 
higher dimension feature space the inpudoutput pairs may 
be separated with a linear hyperplane. 

A. Binary Classijcation 
In binary classification systems the machine learning algo- 

rithm generate the output labels with a hyperplane separation 
where y, e [-l, l] represents the classification “label” of the 
input vector x . The input sequence and a set of training 
labels are represented as {~; ,y;}y=~,  y; = {-l,+l} . If the 
two classes are linearly separable in the input space then the 
hyperplane is defined as wTx+b = 0 ,  w is a weight vector 
perpendicular to the separating hyperplane, b is a bias that 
shifts the hyperplane parallel to itself. If the input space is 
projected into a higher dimensional feature space then the 
hyperplane becomes wTr ( x )  +b = 0. 

The SVM algorithm is based on the hyperplane definition 
[GI, 

wTr ( x i )  +b 2 1, if y, = +1, (5)  
w T r ( x i ) + b  5 -1, if yi = -1, (6) 

This formulation is restated as 

y; [wTr (x i )  +b] 2 1, i = 1 , .  . . ,n. (7) 

Given the training sets in (1) the binary support vector 
machine classifier is defined as 

The nodinear mapping function r (x i )  is related to h ( x ,  x i )  
by r (xlT r (x,) = L ( x ,  xi) . Kernel functions are used to 
compute the scalar dot products of the inputloutput pairs in 
the feature space F .  Four popular kernel functions are the 
linear kernel, polynomial kernel, radial basis function (RBF), 
and multilayer perceptrons (MLP). 

linear, k ( x , x i )  = x . x i  (9) 
polynomial, L ( x ,  q) = ( ( x .  x i )  +eld (10) 

RBF, k ( x , x , )  = exp 

MLP, k ( x ,  x i )  = t a d  (K ( x  . x i )  +e) (12) 

exist many SVM approaches to multiclass classification prob- 
lem. Two primary multiclass techniques are one-vs-one and 
one-vs-rest. One-vs-one applies SVMs to selected pairs of 
classes. For P distinct classes there are y hyperplanes 
that separate the classes. The one-vs-rest SVM technique 
generates P hyperplanes that separate each distinct class 
from the ensemble of the rest. In this paper we only consider 
the one-vs-one multiclass SVM. 

Plan, e t d .  [7] introduced the decision directed acyclic 
graph (DDAG) and a Vapnik-Chervonenkis (VC) analysis of 
the margins. The DDAG technique is based on nodes 
for a P class problem, one node for each pair of classes. The 
test error of the DDAG depends on the number of classes, P ,  
and the margins between the data points and the hyperplanes, 
not on the dimension of the input space. In [7] it is proved 
that maximizing the margins at each node of the DDAG will 
minimize the generalization error. The performance benefit 
of the DDAG architecture is realized when the i th classifier 
is selected at the i t h / j t h  node and the j t h  class is eliminated. 
Refer to Figure 1 for a diagram of a four class DDAG. 

4 3 1 

Fii.  1. DAGSVM for Four Classes 

C. Least Squares SVM 
Suykens, et.al., [8] introduced the LS-SVM which is based 

on the SVM classifier, refer to equation (8). The LS-SVM 
classifier is generated from the optimization problem: 

The non-zero a:s are “support values’’ and the corresponding 1 1 ”  
min LLS (w,$) = 2 I/wI12 + , y C & ,  (13) data mints. x;. are the ‘isupport vectors”. Quadratic pro- w.b.d ~ 

i=1 .. _ _  I ,. 
gramming is one method of solving for the a:s and b in the 
standard SVM algorithm. y and 4% are the regularization and error variables, respec- 

tivelv. The minimization in f13hncludes the constraints 
\ ,  

B. Multiclass Classification 
y; [wTr (x i )  +b] 2 1 - di ,  i = 1,. . . , n, (14) For the multiclass Droblem the machine leaming algorithm _ _  

produces estimates with multiple hyperplane separations. The LS-SVM includes one universal parameter, y, that 
The set of in ut vectors and training labels is defined as ‘ regulates the complexity of the machine.learning model. This 
{xi,y:}i=l,c=l , xi E RN, y; E 11,. . . , C} , i is the index parameter is applied to the data in the feature space, the 
of the training pattern and C is the number of classes. There output of the kernel function. A small value of y minimizes 

k“,J 
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the model complexity, while a large value of y promotes 
exact fining to the training points. The error variable $i 
allows misclassifications for overlapping distributions [9]. 

ZLS (w,b,6, a)  = LLS ( w , W  - (15) 

c ai { ui [WTr +b] - 1 + 6i} 
where ai are Lagrangian multipliers that can either. be 
positive or negative. The conditions of optimality are 

The Lagrangian of equation (13) is defined as 

n 

i d  

IDSS 
2DSS 
3DSS 

- -  dzLs - 0, &iyi = 0 
i=l db 

Set of Eigenvalues 
1 2 3 4 5 6 7 8  

208.2 83.4 60.7 71.0 58.6 49.4 50.1 43.2 
196.9 119.1 66.1 59.4 59.4 43.1 49.3 46.3 
248.2 191.1 93.7 59.1 52.4 52.0 46.0 47.3 

- -  dZLs - 0, yi [WTr (xi) +b] - 1 + 6i = 0 (19) 
dei 

A linear system can be constructed from equations (16) - 
(19) [81, 

I 0 0 -ZT w 0 

[ i* -4 [ g ] = [  ;] (20) 

In the linear systems defined in (20) - (24) the suppon values 
ai are proportional to the errors at the data points. In the 
standard SVM case many of these support values are zero, 
but most of the least squares support values are non-zero. 
In [8] a conjugate gradient method is proposed for finding b 
and e, which are required for the SVM classifier in equation 
(8). 

TABLE I 
SET OF EIGENVALUES FOR MACHLNE LEARNING BASED POWER 

CONTROL 

classify the power estimates into fixed-step and ked-set 
power control commands. 

The eigenvalues and eigenvectors of a signal subspace 
are computed with principle component analysis (PCA). 
The eigenvalues of the signal and noise subspaces directly 
relate to the signal power and interference power. In [lo] 
subspace estimation and tracking algorithms are presented. 
The projection approximation subspace tracking algorithm 
(PASTd) algorithm calculates the signal subspace as a so- 
lution of an unconstrained minimization problem. By using 
projection approximations, the eigenvalues and eigenvectors 
of the signal subspace are computed. Table I includes three 
sets of estimated eigenvalues, one for each one-dimensional 
signal subspace, two-dimensional signal subspace, and three- 
dimensional signal subspace. 

A. Signal Model 
Sinhations of the LS-SVM power control algorithm are 

based on a complex system model that includes amplitude 
and phase distributions representative of the CDMA com- 
munication channel. The received signal at the receiver is 
modeled as 

D J  

Z v  ( t )  = c a(&) a B S d  (t - ' d l )  COS (Wc (t - 78))  +nd ( t ) .  
d.l=l 

(25) 
This model includes D antenna array elements with 
steering a m y  vector a(&) and additive Gaussian noise 
nd (t). The model assumes L independent, resolvable signal 
paths. The multipath variable a d l  is defined as ad = 
pdl e j ( 2 n f c ( t - - r d l ) + $ e ) .  The amplitude of the received sig- 
nal pa, includes the transmitted power &@ and the 
attenuation due to the link gain and shadowing b.  This 
variable is modeled as a fixed, Rayleigh, Ricean, or log- 
normal distributed random variable. The Doppler shift for 
each resolvable path is defined by fc = e; U, is the 
velocity of the mobile in 2, w. is the carrier frequency, and . .  
c is the speed of propagat%. A uniformly distributed carrier 
ohase shift. d.. and a time delav for each signal uath. TAJ.  

111. LS-SVM FOR CDMA POWER CONTROL 

~1 - ~~ ~~~~~ ~~~~~ ~~~~ 

power control commands based on eigenvalues estimates, not 
on assumed knowledge of the link gain, SIR, BEQ or FER. 

code, sd (t - 7 B ) ,  brovides the processing gain at 
,he, rnmplltnr n,,m,,f ...___.____.__ __. 

The LS-SVM algorithm classifies the set of eigenvalues from 
the sample covariance matrix of the received signal into a 
SIR set. The LS-SVM output label determines the power 
control command. An intelligent design of the training se- 
quences allows for the machine learning system to accurately 

Fixed-sreP Power (FspcJ 
This section presents a binary machine learning approach 

to generating the power control commands based on eigen- 
value estimates. The training process of the binary system 
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must include data that spans the expected SIR range of 
the test data. In addition, the LS-SVM algorithmfor power 
control is sensitive to kernel parameters. Simulation results 
prove that the best performance is achieved with both the 
linear kernel and a one degree polynomial kemd, d = 1, 
refer to equations ( 9 ) ,  ( 1 0 ) .  The one degree polynomial 
kernel is effectively a linear kernel with a added bias, 8. 
Simulation results with the radial basis function (RBF) and 
multilayer perceptron ( M U )  kernels include error rates 40% 
to 50% higher than error rates from simulations based on the 
linear and polynomial kernel. 

Figure 2 presents simulation results for a binary LS-SVM 
power control system. The top window shows the received 
SIR data points and the 7 d B  SIR threshold. The bottom 
window shows the binary output of the LS-SVM system. A 
“0” represents a received SIR greater than 7 d B  and therefore 
corresponds to a power down command, a “1” represents a 
received SIR less than 7 d B  and therefore corresponds to a 
power up command. 

0 5 10 15 20 25 30 7% 40 I S  M 
S a m * N n b r  

Fig. 2. Binary U-SVM power control. The plot includes the received SIR 
data points, 7dB SIR threshold, ML estimates, and markers for the ML 
e m s .  

Table lI presents the percentage of errors for five indepen- 
dent simulations. The simulations include 1500 data samples 
that include received SIRS from 15dB to OdB. Included 
are error rates for one, two, and three-dimensional signal 
subspaces and the average error distance from the data points 
to the SIR decision boundary. The total error rate is the 
average of these subspace data pints. The data shows that 
the binary LS-SVM algorithm correctly classifies over 90% 
of all eigenvalue sets. 

C. Fixed-Set Power Control 
A fixed set of power control commands is generated with 

a multiclass machine learning system. Each class represents 
a range of received SIRS, which is translated into a power 
control command. The multiclass system is based on the 
binary Label system, yi E k, where k is a set of real numbers 
that represent an appropriate range of expected SIR values, k 
E [3,5,7,9,11]. The machine learning based fixed-set power 
control command is applied to the standard CDMA power 

TABLE I1 . 
RATE OF Emmoms FOR FIXED STEP Powrim CONTROL 

SIR I1 ’70 of Errors I Ava Dist 
Thresholds 11 Total 1 ID SS I 2D SS 1 3D SS 1 GB) 

0.449 
3 dB 

control system. The size of the command is directly related 
to the size of the one-vs-one multiclass DDAG structure. 

Preprocessing for SVM Training 
1) Generate the training signal vectors for the P SVM 

classes, each class represents a SIR threshold. 
LS-SVM Training 

I) With the P eigenvalue vectors train the 
nodes with the one-vs-one LS-SVM algorithm. 

2) Store the LS-SVM variables, ai and b from equa- 
tion (8), which define the hyperplane separation 
for each DDAG node. 

LS-SVM Testing for the ith f jth DDAG Node 
1) Acquire the input signal from the antenna array, 

the dimension of the signal subspace and the SIR 
in not known. 

2) Calculate the eigenvalues of the sample covariance 
matrix. 

3) Test the input eigenvalue vector against the LS- 
S V M  hyperplane for the ith f j t h  node. 

4) Calculate the mean value of the LS-SVM output 
vector (labels). Compare this value to the label 
definition at the node, then select the proper SIR 
label. 

5) Repeat process for the next DDAG node in the 
evaluation path or declare the final SIR label. 

The LS-SVM system must be trained for all possible SIRs 
and the training process must include an equal number of 
training samples for each DDAG class. Due to the multi- 
dimensional input data the training vectors must account for 
all possible combinations of signal subspace dimensions and 
eigenvalues. 

Refer to Figure 3 for a plot of the LS-SVM power control 
results with a three class DDAG. The plot includes the 
estimated received SIRS, the LS-SVM estimates, markers for 
the LS-SVM errors, and the SIR thresholds. 

Selection of optimum training and test parameters is 
achieved by analyzing empirical results. Correctly classifying 
eigenvalue sets into received SIR sets is dependent on two 
critical variables; the lengths of the training and test vectors, 
and the sample size of the averaging windows applied in 
the preprocessing steps. Figure 4 displays the percentage of 
errors versus the length of training and test vectors. The sim- 
ulations are based on a five class DDAG with SIR thresholds 
set at [ 3 d B ,  5 d B ,  7 d B ,  9 d B ,  l l d B  ] and include 
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Fig. 3. LS-SVM power convol with a three class DDAG. The plot includes 
the received SIR data points, ML estimates. SIR thresholds. and markers 
for the ML emm 

DDAG 
Classes 

3 
4 
5 

1500 independent test cycles. The results show that the 
lowest percentage of errors occurs with 700 training samples 
and 60 test samples; the length of the test vector intluences 
the percentage of errors to a greater degree than the training 
vectors. 

3% of Ermrs 
Total IDSS 2 0  SS 3DSS MSE AvgDist(dB) 
6.40 7.60 7.80 3.80 0.081 0.271 
1333 13.40 12.40 14.20 0.184 0.272 
13.47 16.80 14.20 9.40 0.206 0.248 

Fig. 4. Performance characterization of the LS-SVM algorithm for fixed 
set pawer control based on eigenvalue estimates, percenrage of emrs is a 
function of the lengths of the mining and test vectors. 

The window size for averaging a fixed set of training and 
test data affects the accuracy of classifying the input set 
of eigenvalues. The minimum error rate is achieved with 
a training window that averages six samples and a test 
window that averages five input data samples. In general, the 
error rates are relatively constant for training window sizes 
between two and ten samples, and the error rate increases as 
the size of the test windows increases beyond five samples. 

Table Ill includes the percentage of errors for three, four, 
and five class DDAG systems. The simulations include 1500 
data samples that include received SIRs from 15dB to OdB. 
Included are error rates for one, two, and three-dimensional 
signal subspaces, the MSE between the received-data and the 
LS-SVM estimates, and the average distance from the data 
points in error to the SIR decision boundary. The data shows 
that the three class LS-SVM DDAG algorithm correctly 
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TABLE IU 
RATE OF ERRORS FOR FIXE0 SET POWER CONTROL 

classifies over 93.6% of all eigenvalue sets and the four 
and five class systems correctly classify over 86.5%. The 
average distance of the data points in error to the decision 
boundary is less than 0.275dB. This statistic shows that the 
classification e r "  are located very close to the decision 
boundaries, proving the robust design of the algorithm. 

I )  Mobile Capacity and Convergence: Two standard 
methods for characterizing the performance capabilities of 
power control algorithms is the convergence rate and the 
mobile capacity [l l] .  A performance indicator for both 
methods is the probability of outage, the probability that the 
mobile's received SIR is below the desired threshold. The 
rate of convergence is defined as the number of power control 
iterations required for the system's probability of outage to 
converge to a steady state value. The capacity of a mobile 
cellular system is the number of mobile users that can he 
supported while achieving the required Quality of Service 
(QoS), usually defined in terms of received SIR, BER, or 
FER. 

The simulation system includes randomly generated link 
gains for the number of mobiles simultaneously entering 
the system. Refer to [ I l l  for a complete overview of the 
simulation environment. Through an iterative process the 
transmit powers are updated and the received SIRs converge 
to the desired level. Figure 5 plots the probability of outage 
versus the number of iterations for FSPC and three, four, 
and five class fixed-set power control. The simulation setup 
includes eighteen mobiles entering the cellular system. The 
FSPC system converges to zero probability of outage after 
eighteen power control iterations. The three, four, and five 
class fixed-set systems converge after eleven, eight, and seven 
iterations, respectively. Figure 6 includes the probability of 
outage versus the number of mobiles in the cellular system. 
Eight iterations are completed for each algorithm before 
the SIR and outage probability is calculated. For fixed-set 
power control the capacity decreases with the size of the 
power control set. The five class fixed-set system supports 
twenty mobiles with zero probability of outage. For the small 
number of iterations the capacity of the FSPC system is 
marginal, at best. The mobile capacity for each system may 
increase with a greater number of power control iterations, 
hut as the number of iterations increases, so does the required 
computational time. 

From the simulation results, the performance of the fixed- 
set power control systems far exceeds the capabilities of 
the FSPC system, in terms of convergence, mobile capacity, 
and performance versus computational effort. The IS-95 and 
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Fig. 5. Comparison of outage probabilities versus power control iterations 
for FSPC, and 3.4, and 5 class fixed set power control. 

I I 

Fig. 6. 
FSFC. and 3,4. and 5 class fired set power conmol. 

Comparison of outage probabilities versus mobile capacity for 

cdma2000/3G systems have an 800 bps up/down power con- 
trol command rate. Based on these architectures the power 
control systems are limited to a single power control bit is 
sent to the mobile station every 1.25 milliseconds [4]. This 
constraint forces the cellular system to a FSPC approach. 
The fixed-set power control system requires additional power 
control bits. The three and four class fixed-set designs could 
be implemented with two power control bits and the five 
class system could be implemented with three power control 
bits. These bit requirements deviate from the 3C system 
specifications, but could be achieved with the use of auxiliary 
channels as defined in [12]. 

IV. CONCLUSION 

In this paper we present two solutions to LS-SVM power 
control. Both binary and multiclass machine leaming algw 
rithms are developed to solve this power control classification 
problem. These techniques are based on eigenvalue estimates 
of the sample covariance matrix and do not require the 
dimension of the signal subspace or the estimates of the 
received signal and interference powers. The LS-SVM power 
control algorithms classify the set of eigenvalues into the 

received SIR set which then determines the power control 
command. The two algorithms require unique training se- 
quences, but the optimum performance of both algorithms is 
achieved with the same kemel and test parameters. 

Performance characterization is based on simulations of 
the machine leaming algorithms. The LS-SVM training 
requirements are presented along with the effects of the 
training and test vector lengths. The results show that LS- 
SVM algorithms for fixed-step and fixed-set power control 
achieve low percentages of errors and are insensitive to 
kemel parameters. The best performance is obtained with 
the linear kernel, which is ideal for real-time implementation 
because of the short training and testing times. 
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