
Proceedings of the 42nd IEEE 
Conference on Decision and Control 
Maui, Hawaii USA, December 2003 WeM13-4 

Quasi-Monte Carlo Methods in Robust Control Design 

Peter E Hokayemt, Chaouki T. Abdallaht, 
and Peter Dorato 

EECE Department, MSCOl 1100 
1 University of New Mexico 

Albuquerque, NM 87131-0001, USA 
{hokayem,chaouki,peter}@eece.unm.edu 

Abstract-Many practical control problems are so complex 
that traditional analysis and design methods fail to solve. 
Consequently, in recent years sampling methods that provide 
approximate solutions to such difficult problems have emerged. 
I n  this paper we address the deterministic quasiMonte Carla 
method of sampling and attempt to impose hounds on the error 
involved in the evaluation of the qualiQ‘ of performance of a 
specific controller over the whole plant parameter uncertainty 
space. 

I .  INTRODUCTION 

Many control problems are so complex in nature that 
analytic techniques fail to solve them. Furthermore. even 
if analytic solutions are available, they generally result in 
very high order compensators. It is for these reasons that 
we accept approximate answers to provide us with certain 
guarantees in such control problems. This is when sampling 
methods come into the picture to try and remedy the “cost 
of solution” problem by drawing samples from a sample 
space, and providing an approximate answer. For many years, 
random sampling has dominated the afore mentioned arena 
[6], [7], [161. Recently however, deterministic or quasi-Monte 
Carlo (QMC) metbods have proven superior to random meth- 
ods in several applications such as the calculation of certain 
integrals [IO], financial derivatives [ I l l  and motion planning 
in robotics [2]. They have also been used for stability analysis 
of high speed networks [l]. 

In a recent paper by the authors [4], a fairly self-contained 
presentation of QMC methods was given, and the per- 
formance was compared to classical random Monte Carlo 
method, in a robust control design setting. In this paper, we 
focus more on obtaining a bound on the error involved when 
the decision function is sufficiently differentiable. The main 
reason is that using a differentiable decision function with a 
multivariate polynomial as argument, we can place a bound 
on the value of the error involved in using samples from the 
plant parameter space instead of evaluating the stability of a 
certain controller over the whole plant parameter space. 

The paper starts by formulating the robust control problem 
in Section 11. Then we provide an abridged presentation of 
the main ideas involved in quasi-Monte Carlo sampling in 
Section 111. In Section III-C, we present a detailed description 
of the notion of total variation of a multi-variate function in a 

t The research of C.T. Abdallah and P.F. Hokayem i s  partially suppaned 
by NSF-0233205. 
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&dimensional space. The variation will help us in bounding 
the error involved in using quasi-Monte Carlo sampling 
methods to address the robust design problem. Finally, in 
Section IV, we present a detailed example that helps illustrate 
the theoretical notions introduced earlier in the paper. 

11. PROBLEM STATEMENT 
Consider the control problem shown in Fig 1. 
Problem 1: Given a real rational plant model G ( s , p ) ,  with 

uncertain parameter vector p = ipl p z  . . . p,] E I;, 
does there exist a controller C ( s . q )  that can stabilize the 
uncertain system, where q = [ql qz _ . _  qm] E is 
the admissible controller parameter vector. 

C(s ,q )  G(s ,p)  

Ftg. i. Feedback Structure. 

In Problem 1 above, U‘ is the unit ?-dimensional hypercube 
in I%’. Without loss of generality the regions of plant un- 
certainty and design parameters have been scaled to the 
unit hypercubes 1; and I?, respectively. Let T ( s , p , q )  = 

c(s.q)c(s,p) be the closed-loop transfer function. 
1+C(8.9)G(%Pl 

Problem 1 IS the robust stabilization problem, and requires 
that the controller C(s, q )  stabilizes every plant inside the 
uncertainty interval (1;). This problem is inherently hard to 
solve in general, since we essentially have to check if all the 
plants inside the uncertainty set 1; are stabilizable, which is 
virtually impossible in a limited time span, due the continuity 
of the uncertainty interval. That is why we relax the problem 
into an approximate one through sampling. The method of 
solution is fairly simple using sampling and casting Problem 
1 into an integration setting. 

While Problem 1 requires an exact solution for the robust 
stabilization problem, the approximate solution requires the 
use of an indicator function (Q), which provides answers, 
regarding stability, for discrete points of the plant parameter 
uncertainty spectrum and admissible controller parameter 
space. 

Definition 1: An indicator function I is a decision type 
function that attains crisp values that belong to the discrete 
set {0,1} depending on the decision criteria used to evaluate 
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the problem, at specific points of the sample space. Specif- 
ically for our purposes, we propose the following indicator 
function 

(1) 
1, T ( s , p , q )  is stable 

Q(Pi>Qj)  = { 0, otherwise 

where Pi and Q, are sampled vectors from the plant pa- 
rameter space and admissible controller parameter space, 
respectively. 

Having defined the indicator function Q, we can easily 
cast Problem 1 into a sampling context as follows: 

Pmbkenl 2: Consider Problem 1. Find vector Q‘ = 
[q; q; . . . q;] E 1: which stabilizes the uncertain plant 
with a high level of confidence, that is, Q* maximizes 

where f is called the counting function, and N is a large 
number. 
Problem 2 gets rid of solving the problem over a continuous 
plant parameter space through sampling that space, and 
cuunring those samples that result in P = 1, i.e. a stable 
combination of Pi and Q j .  The second step is to pick 
Q* = Qj that produces the largest answer for fq(P), the 
counting function. The function ~ Q ( P )  can be interpreted 
as the average performance of the uncertain system with 
respect to a certain controller Qi. in other words it is an 
approximation of the integration of the performance function 
over the plant parameter space. Hence, our problem is cast 

The main objective in this paper is to empioy a differ- 
entiable indicator function. Hence we propose the following 
scaled indicator function 

into an integration setting. . .  

1 + tanh. (w) 
2 ( 3 )  

where ti(.) is a multivariate polynomial. that meets our 
requirements due to the following reasons: 

tan.h(v(.)) is a differentiable function as long as the U(.) 
is differentiable, which is satisfied in our case since U(.) 

tank(.)  E [-1,1], however according to our proposed 
function in ( 3 ) .  Q(.) E [0,1] which satisfies the defini- 
tion of the indicator function. 
6 determines how steep our indicator function is around 
the decision point 0. Figure 2 shows the indicator 
function Q for various values of 6. As 6 decreases, U 
becomes very steep and mimics the behavior of a crisp 
function with retention of differentiability. 

Qj(Pi ,Qj)  = 

. is a multivariate polynomial. 

111. QUASI-MONTE CARLO METHODS 

In this section we review the basic definitions involved 
in qausi-Monte Carlo (QMC) methods and state the basic 

l+ tanh( f )  
Fig. 2. Plot of 7 for different values of 6 

inequalities governing the quality of the approximation of 
integrals using deterministic sampling methods. 

The main idea in QMC methods is to evaluate an integrand 
at specific points and approximate the integral by the average 
of the results obtained at these specific points. 

A. Discrepancy 
The discrepancy is a measure of the ‘regularity in distribu- 

tion’ of a set of points in the sample space. In order to define 
it mathematically, we need to define the following counting 
function: 

N 

A(B; P )  = I B ( X , )  (4) 
1=1 

where B c I d  is an arbitrary set, P = ( X l ,  . . . , X,) is a 
point set, N is the number of points, and I B  is an indicator 
function. 

Definition 2: The general formula for the evaluation of the 
discrepancy is given by 

where &(B) is the d-dimensional Lebesgue measure of the 
arbitrary set B and 8 is the family of all lebesgue measurable 
subsets B of I d .  
Definition 2 can be specialized into the following two cases: 

The star discrepancy Dh ( X I ,  . . . , X,) is obtained by 
letting B in (5) be defined as follows 

d 

8* = {VB : B = n[O, U < ) )  

t= l  

i.e. the set of all d-dimensional subsets of I d  that have 
a vertex at the origin, and ut’s being arbitrary points in 
the corresponding 1-dimensional space. . The extreme discrepancy D,v(Xl,  . . . , X,) is obtained 
by letting B in (5) be defined as follows B = {VB : E = 
~ ~ = l [ v ~ , u ~ ) } ,  where D,’S and u,’s are both arbitrary 
points in the corresponding 1-dimensional space. 

The star discrepancy and extreme discrepancy are related 
through the following inequality Dk(P) 5 D,v(P) 5 
2d DL (P) .  
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B. Point Sets Generntion 

In this section we briefly describe how to generate quasi- 
Monte Carlo low discrepancy points in an d-dimensional 
sample space. Since the points result from a deterministic 
method of generation, they possess a certain regularity prop- 
erty of distribution in the sample space described by their 
discrepancy. 

For brevity, we are not going to present the various 
methods used in the generation of the sample points. Instead, 
we refer the reader to 141 for a compact presentation and 191 
for a more involved one, and present the basic methods that 
we are going to utilize in Section IV-A. 

I )  Van Der Corpur: The van der Corput sequence in base 
bs where b 2 2 E W, is a one dimensional sequence of points 
that possesses the property of having a low discrepancy in 
the unit interval 1 = [0,1] c R. The main idea is to express 
every integer n E W in base b and then reflect the expansion 
into the unit interval II This is done as follows: 

1) Let Rb = {0 ,1 , .  . . , b-1} be the remainder set modulo 

2) Any integer n 2 0 can be expanded in base b as, n = 

3) Finally, we get the sequence {Xn} through X, = 

As will be seen, the van der Corput sequence will be 
used to generate higher dimensional vector samples, with 
the variation of the expansion base b. Finally, the star 
discrepancy of the van der Corput sequence is given by: 
Df(X1,. . . , X N )  = U(N-'  log(N)) ,  with a constant de- 
pending on the base of expansion. 

2) Halfon Sequence : The Halton sequence is a gener- 
alization of the van der Corput sequence given in Section 
111-B.1 to span an d-dimensional sample space. The main 
idea is to generate d I-dimensional sequences and form 
the Corresponding d-dimensional vector sample points. Let 
bl ,  b z ,  . . . , bd be the corresponding expansion bases for each 
dimension, preferably relatively prime'. Let $b1,  & , . . . , $,,* 
be the corresponding reflected expansions according to the 
corresponding bases. Then the d-dimensional sequences 
{ X t )  are formed as follows: 

b 

CF=oaak(n)bk, where ak(n) E &,Vk. 

db(n) = Cr=oaak(n)b-j-'. 

X n  = (db,, d b z , .  , .>  $ b d )  E I d  (6) 

Assume that the bases for the expansion are relatively prime, 
then the star discrepancy is given by (see 191) 

'Choosing the expansion bases relatively prime reduces the discrepancy, 
hence the eror bound 

C. Total Variation 
The problem of bounding the error involved in evaluating 

the integral of a function using QMC methods depends on 
our ability to obtain the value of total variation of the function 
under consideration, as will be seen in the next section. 
Consequently, in this section we will concentrate on defining 
several notions of variation of a function defined on an 
interval 10, 1Id. 

Definition 3: [31 A finite function f (z) defined on and 
interval [O,l] is said to have 'bounded variation' if there 
exists a number A f ,  such that for any partition p of the 
interval [0,1] 

Moreover, the 'total variation' of f (x) on '[O, 11 is defined 
as V ( f )  = suppEp (up),  where P is the set of all partitions 
on [0,1]. 
Notice that Definition 3 pertains to functions of a single 
variable and does not require that the function be continuous. 
However, the function has to have a countable number of 
discontinuities on the interval under study. If it is further 
assumed that the function f (z) is differentiable on [0,1], 
then the total variation is defined as follows: 

Nufe I :  The total variation of a function can be under- 
stood as the sum of all the heights of monotone segments. 
That is why we integrate over the absolute value of the 
gradient in (8). 

The total variation of a function f defined on a one- 
dimensional unit interval 1 = [0,1] is fairly easy to calculate. 
However, if f is defined on Ild the problem of calculating 
Vcd) ( f )  (the d-dimensional total variation) is more involved. 
(see [5], [9]). In what follows we only present the defini- 
tions of the total variation for continuous and differentiable 
functions. 

Definition 4: The total variation of a function f defined 
on Id in the sense of Vitali is defined as 

whenever the indicated partial derivative is continuous on Id. 
If V ( d )  < +m, then the function f is said to have a 'bounded 
total variation in the sense of Ktali'. 
Note that the Definition 4 only measures the variation of 
f over all the variables at once. However, indicated partial 
derivative in (9) might be zero, but still the variation over 
the domain is not equal to zero as illustrated in the following 
example. 

Example I :  Let f(z1,xz) = 51 + 2 2  + a = 0 and 
the total variation as defined in (9) is equal to zero. However, 
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D. Error in Quasi-Monte Carlo 

the unit hypercube for N samples is defined as follows, 
The error in quasi-Monte Carlo methods integration over 

Fig. 3. Plot of f ( X 1 , X z )  =xi 4- 52 

when we plot the function f ( x l ; x 2 ) ,  it is varying over the 
interval [0, 112 as seen in Figure 3. 

The problem encountered in the Definition 4 can he 
remedied via the following enhanced definition of the total 
variation. 

Defnirion 5: [E], [9] Let f be a function defined on Id 
with bounded variation in the sense of Vitali. Suppose that 
the restriction of f to each face F of Id of dimension 
k = 1 , 2 , .  , , , d - 1 is also of bounded variation on F in the 
sense of Vitali. Then the function f is said to be of ‘bounded 
variation in the seiie of Hardy and Krause’. 

Note 2: The restriction of the function f to the face F in 
definition 5 is achieved through setting the d - k variables 
equal to 1. 
Definition 5 overcomes the difficulties we encountered with 
Definition 4 as seen in the following example. 

Exuniple 2: Let us revisit the same function in example 
1. Using definition 5 we get the following formula for the 
total variation of this second order function 

Substituting and performing the necessary partial differenti- 
ation and integration we get V(’)( f )  = 2. 
The second order total variation has been used in [141, 1151, 
and the following intuitive hound on the variation on (IO) 
was suggested in 1141 

The following two theorems provide bounds on the error 
(U), for the cases of I-dimensional and d-dimensional inte- 
gration, respectively. 

Let f(.) he a function defined on 1 = [O: 11 of bounded total 
variation I/( f )  

Theorem I :  Koksma’s Inequality [9] 

Theorem 2: Koksma-Hlawka Inequality [9] 
Let f(.) be a function defined on Ud of bounded variation in 
the sense of Hardy and Krause 

Basically, Theorems 1 and 2 state that the magnitude of 
the error depends on the’ total variation (defined in Section 
111-C) of the function and the sfar discrepancy of the point set 
chosen. That is why we are always after low staT discrepancy 
point sets in quasi-Monte Carlo methods. It is also worth 
mentioning that the e m r  hounds are conservative, i.e. if the 
variation of the function is large, we get a large bound on 
the error, although the actual error might be small. 

IV. EXAMPLE 
In this section we consider an old problem first intro- 

duced by Truxal in [18], and recently revisited in [4]. The 
main idea is having a hypercube-like parameter space (In) 
with a hypersphere-like region (Bn(O, p) )  of instability. The 
problem becomes challenging when the radius instability 
becomes close to the boundary of the sampling space. Refer 
to Figure 1 with the plant transfer function G(s ,p , r )  = 

and the s a + s + ( 3 + 2 p ~ + 2 p z )  
a J + ( l + m  +p2)s2+(l+m + p z ) s + ( O - 2 5 + ~ ~ + 3 ~ 1  + ~ P ~ + ~ P I P * )  
simple gain controller C(s, q )  = q. with q E [O,  11, p l  E [0.1] 
and p z  E [0,1]. The resulting closed-loop characteristic 
polynomial is 

P ( S )  = s3 + ( 1  +PI + PZ + q)s2 + ( 1  +PI + PZ + 4)s 

+(0.25 + pz + 3 ~ 1  + 3p2 + 3q 

i 2 P I P 2  + 2PIq + 2P2Q) (15) 

Using Maxwell’s criterion for 3‘d-order polynomials, we 
obtain the following multivariate-polynomial inequalities 
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It is easily seen that the first and second inequalities in (16) 
are always satisfied for the ranges of uncertainties and design 
regions given. However, the third inequality requires a closer 
look to establish the stability regions for the closed-loop 
system. Through completing the squares, the third inequality 
could be written as 

tJ3(Pl,P2,9) = (PI -0.5)’+(pz -0.5)2+(q-0.5)2 -pz  > 0 

It is easily seen that (17) equated to zero results in the 
equation of a sphere centered at (0.5,0.5,0.5) and radius p. 
Therefore, our instability region is defined by the intersection 
of the unit 3-dimensional hypercube and the spherical region 
given in (17). Consequently, the problem is restated as 
follows 

(17) 

Usually solution regions for problems such as the one pre- 
sented in (18) are hard to obtain analytically. However, in 
our case the solution is fairly simple: Qsoi = { [0,0.5 - p )  U 
(0.5 + p, 111. For p = 0.499 we have Qsol = { [0,0.001) U 

In what follows, we address the same the problem using 
QMC sampling. The indicator function is defined as follows 

(0.999, l]}. 

1 ( ( ~ ~ ( P I , P Z > $ ~ )  
b Qj := Q(p l ,pz ,Q . )  - - 1 + t a n h  

- 2  
(19) 
, I  

where p1,pz are the plant parameter variables, and 
v3(pl .p~,  Q,) is defined for a specific controller Q, sampled 
from the admissible contml parameter space. The main objec- 
tive is to upper-bound the error involved between the actual 
evaluation of the indicator function ft over the whole region 
of plant unceltainty space P2 and the empirical evaluation 
based to samples taken over the same space, i.e. 

Let us first calculate the total variation of Qj. The partial 
derivatives involved in the calculation of the total variation 

of Qj are, 

(PI - 0.5)& - 0.5) 
6 2  

3- - -4 a2Q. 

aPlaP2 ( ~JB(PI 3 PZ, Qj)) 

6 
x tanb 

The corresponding error e, in (20) is upper-bounded by 
V(2)(Qj)D;(P1,. . . ,PN)  through the use the Koksma- 
Hlawka inequality given in Theorem 2 and total variation 
on a 2-dimensional space obtained by substituting (21) in 
(IO) and integrating. 

A. Simulation 

We generated using Matlab a Halton sequence of 1000 
samples from the plant uncertainty space P = (PI = 
~ I , I , P Z , I ] ,  ... ,PIOOO = I~IJOOO,PZ,~OOO]) .  And from the 
controller parameter space we generated a van der Corput 
sequence of 700 samples. Applying a crisp indicator function 
(sgn(v3(pli,pzi,Q,)) as in [4], we obtain Q; = 100% 
stabilization with respect to the sampled plants for the 
controller Q; = 0.00032 E Qa0i. 

Now, we utilize the indicator function provided in (3) with 
6 = 0.1. For the same controller Q; = 0.00032 we obtain 
Q; = 99.95%. The various differentials (in absolute value) 
in (21) are derived for the corresponding controller. 

I awp13 i )  1 a W ( L P 2 )  

1 I a2wy’(pl,p2) 

s l*lfPl. = so l*ldP2 = 0.01313 

so so I ai,apz ldpldpz z 2 5 
using the defimte mtegrahon functlon on Matlah. 

azw(zl,zz) maxPllP2 I a;Lap2 1 = 6.354, using numerical 
approximation for the integral’. 

Then the total variation is bounded by V@)(Q;) I 2 x 
0.0131 + 2 = 2.0262. The error involved in the integration 
using quasi-Monte Carlo method for the optimal controller 
Q; = 0.00032 is bounded as follows, 

e; 5 V(Z)(Q;)D;(P) < 2.0262 x 0.0557 = 0.1128 (22) 

where D;,(P) was calculated using (7). 

E. Discussion 

Several notes are in order regarding the results obtained 
in Section IV-A. 

2We bounded the intcaml of ihe absolute value of the second panial 
derivative by the maximum value in order to stress the imporlance of the 
bound introduced in (11) when the calculation of the integral is hard. 
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The value of the final error in (22) says that our indicator 
function ‘P; = 99.95% could have an approximation 
errur of 111.28%. 
It should be noted that whenever the value of 6 used 
in the indicator function decreases, the value @; tends 
more to the value obtained when using crisp indicator 
function, i.e. 100%. 
Also as 6 decreases the peak values in the graph for the 
absolute value of the second partial derivative of Q j ,  
shown in Figure 4, increases tremendously due to the 
large variation around the origin. 

I.) *. -.... 4 1  -_, ,_w<._..4”..__1 

Fig. 4. 
indicator surface (Sf; )  for Qf = 0.00032 and 6 = 0.1. 

Plot of absolute value of partial derivatives in (21) and 

V. CONCLUSION 

In this paper we utilized deterministic sampling to address 
the robust control design problem in an approximate manner. 
We considered the notion of total vuriation of a function on 
a &dimensional space and utilized it in bounding the error 
generated through the use of quasi-Monte Carlo sampling, 
It is fairly easy to calculate the error involved when the 
indicator function is differentiable.’ Hence, using a smooth 
indicator function allowed us to derive hounds on the e m r  
based on the value of the total variation of the indicator 
function. 
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