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Abstract—A deterministic dynamic nonlinear time-delay
system is developed to model load balancing in a cluster of
computer nodes used for parallel computations. This model
refines a model previously proposed by the authors to account
for the fact that the load balancing operation involves proces-
sor time which cannot be used to process tasks. Consequently,
there is a trade-off between using processor time/network
bandwidth and the advantage of distributing the load evenly
between the nodes to reduce overall processing time.
The new model is shown to be self consistent in that the

queue lengths cannot go negative and the total number of
tasks in all the queues is conserved (i.e., load balancing can
neither create nor lose tasks). It is shown that the proposed
model is (Lyapunov) stable for any input, but not necessarily
asymptotically stable. Experimental results are presented and
compared with the predicted results from the analytical model.
In particular, simulations of the models are compared with an
experimental implementation of the load balancing algorithm
on a parallel computer network.
Index Terms—Load balancing, Networks, Time Delays

I. INTRODUCTION
Distribution of computational load across available re-

sources is referred to as the load balancing problem in the
literature. Various taxonomies of load balancing algorithms
exist. Direct methods examine the global distribution of
computational load and assign portions of the workload
to resources before processing begins. Iterative methods
examine the progress of the computation and the expected
utilization of resources, and adjust the workload assign-
ments periodically as computation progresses. Assignment
may be either deterministic, as with the dimension ex-
change/diffusion [1] and gradient methods, stochastic, or
optimization based. A comparison of several deterministic
methods is provided by Willeback-LeMain and Reeves [2].
Approaches to modeling and static load balancing are given
in [3][4][5].
To adequately model load balancing problems, several

features of the parallel computation environment should be
captured: (1) The workload awaiting processing at each
computational element (CE); (2) the relative performances
of the CEs; (3) the computational requirements of each
workload component; (4) the delays and bandwidth con-
straints of CEs and network components involved in the
exchange of workloads and, (5) the delays imposed by
CEs and the network on the exchange of measurements. A
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queuing theory [6] approach is well-suited to the modeling
requirements and has been used in the literature by Spies
[7] and others. However, whereas Spies assumes a homo-
geneous network of CEs and models the queues in detail,
the present work generalizes queue length to an expected
waiting time, normalizing to account for differences among
CEs, and aggregates the behavior of each queue using a
continuous state model.
The present work focuses upon the effects of delays in

the exchange of information among CEs, and the constraints
these effects impose on the design of a load balanc-
ing strategy. Preliminary results by the authors appear in
[8][9][10][11][12][13][14]. An issue that was not consid-
ered in this previous work is the fact that the load balancing
operation involves processor time which is not being used
to process tasks. Consequently, there is a trade-off between
using processor time/network bandwidth and the advantage
of distributing the load evenly between the nodes to reduce
overall processing time. The fact that the simulations of the
model in [14] showed the load balancing to be carried out
faster than the corresponding experimental results motivated
the authors to refine the model to account for processor
constraints. A new deterministic dynamic time-delay system
model is developed here to capture these constraints. The
model is shown to be self consistent in that the queue
lengths cannot go negative and the total number of tasks
in all the queues and the network are conserved (i.e., load
balancing can neither create nor lose tasks). In contrast
to the results in [14] where it was analytically shown the
systems was always asymptotically stable, the new model
is only (Lyapunov) stable, and asymptotic stability must be
insured by judicious choice of the feedback. Simulations of
the nonlinear model are compared with data from an exper-
imental implementation of the load balancing algorithm on
a parallel computer network.

II. MATHEMATICAL MODEL OF LOAD BALANCING
In this section, a nonlinear continuous time model is de-

veloped to model load balancing among a network of com-
puters. To introduce the basic approach to load balancing,
consider a computing network consisting of computers
(nodes) all of which can communicate with each other. At
start up, the computers are assigned an equal number of
tasks. However, when a node executes a particular task
it can in turn generate more tasks so that very quickly
the loads on various nodes become unequal. To balance
the loads, each computer in the network sends its queue
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size ( ) to all other computers in the network. A node
receives this information from node delayed by a finite
amount of time ; that is, it receives ( ). Each node
then uses this information to compute its local estimate1
of the average number of tasks in the queues of the
computers in the network. In this work, the simple estimator³P

=1 ( )
´

( = 0) which is based on the
most recent observations is used. Node then compares its
queue size ( ) with its estimate of the network average
as
³
( )

³P
=1 ( )

´ ´
and, if this is greater

than zero, the node sends some of its tasks to the other
nodes. If it is less than zero, no tasks are sent. Further, the
tasks sent by node are received by node with a delay
. The controller (load balancing algorithm) decides how

often and fast to do load balancing (transfer tasks among
the nodes) and how many tasks are to be sent to each node.
As just explained, each node controller (load balancing

algorithm) has only delayed values of the queue lengths of
the other nodes, and each transfer of data from one node
to another is received only after a finite time delay. An
important issue considered here is the effect of these delays
on system performance. Specifically, the model developed
here represents our effort to capture the effect of the
delays in load balancing techniques as well as the processor
constraints so that system theoretic methods could be used
to analyze them.

A. Basic Model

The basic mathematical model of a given computing node
for load balancing is given by

( )
= (1 ( )) ( ) ( )

+
X
=1

( ( )) ( ) (1)

> 0 = 0
X
=1

= 1

where ( ) = 0 0 if 0 and ( ) = 0 if
0. In this model

• is the number of nodes.
• ( ) is the expected waiting time experienced by a
task inserted into the queue of the node. With
( ) the number of tasks in the node and
the average time needed to process a task on the
node, the expected (average) waiting time is then

given by ( ) = ( ) . Note that = is
the number of tasks in the node queue. If these
tasks were transferred to node , then the waiting time
transferred is = , so that the fraction

converts waiting time on node to waiting time
on node .

1It is an estimate because at any time, each node only has the delayed
value of the number of tasks in the other nodes.

• 0 is the rate of generation of waiting time on
the node caused by the addition of tasks (rate of
increase in ).

• 0 is the rate of reduction in waiting time caused
by the service of tasks at the node and is given by

(1× ) = 1 for all if ( ) 0 while if
( ) = 0 then , 0; that is, if there are no tasks in

the queue, then the queue cannot possibly decrease.
• = 1 or 0 is the control input which specifies whether
tasks (waiting time) are processed on a node or tasks
(waiting time) are transferred to other nodes.

• 0 is the limit on the rate at which data can be
transmitted from one node to another and is basically
a bandwidth constraint.

• ( ) ( ) is the rate at which node sends
waiting time (tasks) to node at time where >
0
P

=1 = 1 and = 0. That is, the trans-
fer from node of expected waiting time (tasks)R

2

1
( ) ( ) in the interval of time [ 1 2] to

the other nodes is carried out with the node
being sent the fraction

R
2

1
( ) ( ) of this

waiting time. As
P

=1

³ R
2

1
( ) ( )

´
=R

2

1
( ) ( ) , this results in removing all of the

waiting time
R

2

1
( ) ( ) from node .

• The quantity ( ( )) ( ) is the
rate of transfer of the expected waiting time (tasks) at
time from node by (to) node where ( = 0)
is the time delay for the task transfer from node to
node .

• The factor converts the waiting time from node
to waiting time on node

In this model, all rates are in units of the rate of change of
expected waiting time, or time/time which is dimensionless.
As = 1 or 0, node can only send tasks to other nodes
and cannot initiate transfers from another node to itself. A
delay is experienced by transmitted tasks before they are
received at the other node.
1) Control Law : The information available to use in a

feedback law at each node is the value of ( ) and the
delayed values ( ) ( 6= ) from the other nodes.
Let ( = 0) denote the time delay for communicating
the expected waiting time from node to node . These
communication are much smaller than the corresponding
data transfer delays . Define

,
X
=1

( )

to be the local average which is the node’s estimate of
the average of all the nodes. (This is an only an estimate
due to the delays.) Further, define

( ) , ( )

P
=1 ( )
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to be the expected waiting time relative to the local average
estimate on the node.
A simple control law one might consider is

( ) = ( ( )) (2)

where

( ) = ( )

P
=1 ( )

and (·) is defined by ( ) = 1 if > 0 and = 0 if 0

III. MODEL CONSISTENCY AND STABILITY

It is now shown that the open loop model is consistent
with actual working systems in that the queue lengths
cannot go negative and the load balancing algorithm cannot
create or lose tasks, it can only move then between nodes.

A. Non Negativity of the Queue Lengths

To show the non negativity of the queue lengths, recall
that the queue length of each node is given by ( ) =
( ) . The model is rewritten in terms of these quantities

as ³
( )

´
=

(1 ( )) 1
( ) ( )

+
X
=1

( ( )) ( )

(3)

Given that (0) 0 for all , it follows from the right-
hand side of (3) that ( ) = ( ) 0 for all 0
and all . To see this, suppose without loss of generality
that ( ) = ( ) is the first queue to go to zero, and
let 1 be the time when ( 1) = 0. At the time 1,
(1 ( )) = 0 as ( ) = 0 if = 0. Also,P
=1 ( ( )) ( ) 0 as 0. Further,

the term ( ) = 0 for 0. Consequently³
( )

´
0 for = 0

and thus the queues cannot go negative.

B. Conservation of Queue Lengths

It is now shown that the total number of tasks in all the
queues and the network are conserved. To do so, sum up
equations (3) from = 1 to getÃX

=1

( )

!
=
X
=1

µ
( ) (1 )

¶
(4)

X
=1

( ( ))
+
X
=1

X
=1

( ( )) ( )

which is the rate of change of the total queue lengths on all
the nodes. However, the network itself also contains tasks.

The dynamic model of the queue lengths in the network is
given by

( ) =
X
=1

( ( )) ( )

+
X
=1

( ( )) ( ) (5)

Here is the number of tasks put on the network that
are being sent to node . This equation simply says that
the node is putting tasks on the network to be sent to
node at the rate ( ( )) ( ) while the node is
taking these tasks from node off the network at the rate

( ( )) ( ). Summing (5) over all the
nodes, one obtains

ÃX
=1

( )

!

=
X
=1

X
=1

( ( )) ( ) (6)

+
X
=1

X
=1

( ( )) ( )

=
X
=1

X
=1

( ( )) ( )

+
X
=1

( ( )) ( )
(7)

Adding (4) and (7), one obtains the conservation of queue
lengths given byX

=1

³
( ) + ( )

´
=
X
=1

µ
(1 )

¶
(8)

C. Stability of the Model

Combining the results of the previous two subsections,
one can show Lyapunov stability of the model. Specifically,
we have
Theorem: Given the system described by (1) and (5) with
= 0 for = 1 and initial conditions (0) 0,

then the system is Lyapunov stable for any choice of the
switching times of the control input functions ( )
Proof: First note that the are non negative as

( ) =
X
=1

ÃZ
( ( )) ( )

!
0

(9)
By the non-negativity property of the , the linear function³

( ) ( )
´
,
X
=1

³
( ) + ( )

´
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is a positive definite function. Under the conditions of the
theorem, equation (8) becomesX

=1

³
( ) + ( )

´
=

X
=1

( )
(1 )

(10)
which is negative semi-definite. By standard Lyapunov
theory (e.g., see [15]), the system is stable.

D. Specification of the
The model (1) did not have the specified explicitly.

Recall that is the fraction of
R

2

1
( ) ( ) in the

interval of time [ 1 2] that node allocates (transfers)
to node and conservation of the tasks requires >
0
P

=1 = 1 and = 0. The quantity ( )
represents what node estimates the waiting time in the
queue of node is with respect to the local average of node
. If queue of node is above the local average, then node
does not send tasks to it. Therefore sat

¡
( )

¢
is an appropriate measure by node as to how much node
is below the local average. Node then repeats this

computation for all the other nodes and then portions out
its tasks among the other nodes according to the amounts
they are below the local average, that is,

=
sat
¡

( )
¢X

Ä 6=
sat
¡

( )
¢ (11)

All are defined to be zero, and no load is transferred, if
the denominator

X
Ä 6=

sat
¡

( )
¢
= 0.

IV. MODEL PARAMETERS AND EXPERIMENTAL SETUP
A. Model Parameters

In this section, the determination of the model parameters
is discussed. Experiments were performed to determine the
value of 0 and the threshold 0. The top plot in Figure 1
is the experimentally determined time to transfer data from
one node to another in microseconds as function of message
size in bytes. Each host measures the average, minimum and
maximum times required to exchange data between itself
and every other node in the parallel virtual machine (PVM)
environment. The node starts the timer when initiating
a transfer and stops the timer when it receives the data
back, so the round-trip transfer time is measured. This also
avoids the problem of synchronizing clocks on two different
machines. The data sizes vary from 4 bytes to 4 Mbytes.
In order to ensure that anomalies in message timings are
minimized the tests are repeated 20 times for each message
size.
The bottom plot in Figure 1 is the experimentally deter-

mined bandwidth in Mbps versus the message size in bytes.
Based on this data, the threshold for the size of the data
transfer could be chosen to be less than 4×104 bytes so that
this data is transferred at a bandwidth of about 400 Mbps.
Messages of larger sizes won’t improve the bandwidth.
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Fig. 1. Top: Round trip time vs. amount of data transfered in bytes.
Bottom: Measured bandwidth vs. amount of data transfered in bytes.

Meanwhile, very high bandwidth means the system must
yield computing time for communication time. Here the
threshold is chosen to be 4× 103 bytes since, as the top of
Figure 1 shows, this is a trade-off between bandwidth and
transfer time. With a typical task to be transferred of size
400 bytes/task (3200 bits/task), this means that the threshold
is 10 tasks. Further, the hysteresis threshold 0 is given by

0 = 10×
while the bandwidth constraint 0 is given by

0
=
400× 106 bps
3200 bits/task

= 12 5× 104 tasks/second

0 = 12 5× 104 × (waiting-time) seconds
second

B. Experimental Setup of the Parallel Machine

A parallel machine has been built as an experimental
facility for evaluation of load balancing strategies. A root
node communicates with groups of computer networks.
Each of these groups is composed of nodes (hosts) hold-
ing identical copies of a portion of the database. (Any pair
of groups correspond to different databases, which are not
necessarily disjoint. A specific record is in general stored
in two groups for redundancy to protect against failure of
a node.) Within each node, there are either one or two
processors. In the experimental facility, the dual processor
machines use 1 6 GHz Athlon MP processors, and the single
processor machines use 1 33 GHz Athlon processors. All
run the Linux operating system. Our interest here is in the
load balancing in any one group of nodes/hosts.
The database is implemented as a set of queues with

associated search engine threads, typically assigned one per
node of the parallel machine. Due to the structure of the
search process, search requests can be formulated for any

4196



target profile and associated with any node of the index tree.
These search requests are created not only by the database
clients; the search process itself also creates search requests
as the index tree is descended by any search thread. This
creates the opportunity for parallelism; search requests that
await processing may be placed in any queue associated
with a search engine, and the contents of these queues may
be moved arbitrarily among the processing nodes of a group
to achieve a balance of the load. An important point is that
the actual delays experienced by the network traffic in the
parallel machine are random. Experiments were preformed,
the resulting time delays measured and these values were
used in the simulation for comparison with the experiments.

V. SIMULATIONS AND EXPERIMENTS
Here a representative experiment is performed to indicate

the effects of time delays in load balancing. The experiment
consists of carrying out the load balancing once at a fixed
time (open loop) in order to facilitate a comparison with the
responses obtained from a simulation based on the model
defined by (1) and (11). Note that by doing the experiment
open loop with a single load balance time, the (random)
delays can then be measured after the data is collected and
then used in the simulations.

A. Experiment 1

Figure 2 is the experimental response of the queues
versus time with an initial queue distribution of 1(0) =
600 tasks 2(0) = 200 tasks and 3(0) = 100 tasks.
The average time to do a search task is 400 sec. In
this experiment, the software was written to execute the
load balancing algorithm 0 = 1 millisec using the as
specified by (11). The plot shows that the data transfer delay
from node 1 to node 2 is 21 = 1 8 millisec while the data
transfer delay from node 1 to node 3 is 31 = 4 0 millisec.
In this experiment the inputs were set as 1 = 0 2 =
0 3 = 0.
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Fig. 2. Experimental results of the load balancing algorithm executed at
0 = 1 millisecond.

Figure 3 is a simulation performed using the model (1)
with the as specified by (11). In the model (1) the
waiting time was converted to tasks by ( ) = ( )
where the ’s were taken to be the average processing time
for a search task which is 400 sec. In Figure 3, 1(0) =
600 tasks ( 1(0) = 600× 400× 10 6 = 0 24 sec), 2(0) =
200 tasks ( 2(0) = 200 × 400 × 10 6 = 0 08 sec) and
3(0) = 100 tasks ( 3(0) = 100× 400× 10 6 = 0 04 sec)
with the delay values set at 21 = 1 8 millisec 31 = 4 0
millisec and the load balancing algorithm was started (open
loop) at 0 = 1 millisec. In this simulation, the inputs were
set as 1 = 0 2 = 0 3 = 0 1 = 2 = 3 = 1 Note
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Fig. 3. Simulation of the load balancing algorithm executed at 0 = 1
millisecond.

the close similarity of the two figures indicating the model
proposed in (1) with the given by (11) is capturing the
dynamics of the load balancing algorithm. Figure 4 is a plot
of the queue size relative to the local average, i.e.,

( ) , ( )
X
=1

( )

for each of the nodes. Note the effect of the delay in terms
of what each local node estimates as the queue average and
therefore whether it computes itself to be above or below
it. This is now discussed in detail as follows:
At the time of load balancing 0 = 1 millisec, node 1

computes its queue size relative to its local average ( 1 )
to be 300, node 2 computes its queue size relative to its
local average ( 2 ) to be 100 and node 3 computes its
queue size relative to its local average ( 3 ) to be 200.
At time 1 node 2 receives 100 tasks from node 1 so that

node 2’s computation of its queue size relative to the local
average is now 2 = 0. Right after this data transfer,
node 2 updates its own queue size to be 300 so its local
average is now (600+300+100) 3 333making 2

300 333 = 33.
At time 2, node 3 receives the queue size of node 2

(which just increased to about 300 as shown in Figure 2).
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Node 3 now computes 3 to be about (100 (600 +
300 + 100) 3) = 233

1t

2t

3t

4t
0t

5t
6t

node 1

node 2

node 3

Fig. 4. Experimental plot of ( ) =

( )
³P

=1 ( )
´

for = 1 2 3

At time 3, node 1 receives the queue size of node 2
(which is now about 300 - see Figure 2). As node 3 is still
broadcasting its node size to be 100, node 1 now computes
1 (300 (300 + 300 + 100) 3) = 67.
At time 4, node 2 receives the queue size of node 1

(= 300) and updates its local average to be (300 + 300 +
100) 3 = 233 so that 2 300 233 = 67.
At time 5, node 3 receives the 200 tasks from node 1 and

updates its queue size which is now about 300. The local
average computed by node 3 is then (600+200+300) 3 =
367 so that 3 (300 367) = 67.
Finally, just after 5 at time 6, node 1 receives the queue

size of node 3 (which is now about 300 - see Figure 2).
Node 1 now computes its 1 (300 (300 + 300 +
300) 3) = 0.
Node 2 receives the queue size of node 3 (which is

now about 300 - see Figure 2). Node 2 now computes its
2 (300 (300 + 300 + 300) 3) = 0.
Node 3 is now updated with the queue size of node 2

(which is now about 300 - see Figure 2) and now computes
3 (300 (300 + 300 + 300) 3) = 0.

VI. SUMMARY AND CONCLUSIONS

In this work, a load balancing algorithm was modeled
as a nonlinear time-delay system. It was shown that the
model was consistent in that the total number of tasks was
conserved and the queues were always non negative. It was
also shown the system was always stable, but not necessarily
asymptotically stable. Experiments were performed that
indicate a correlation of the continuous time model with the
actual implementation. Future work will entail considering
feedback controllers to speed up the response.
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