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Abstract— In this paper we discuss a feasible solution to the
hybrid optimal switching problem, where the measurement
and feedback signals are communicated via a network and
undergo a constant delay. We utilize the concept of model
prediction to compensate for the induced delay and periodic
update of state measurements. A bound on the resulting
estimation error is provided, and an example is provided to
illustrate the method.

I. INTRODUCTION

Over the past decade, major advancements in the area of

communication and computer networks have led to their

inclusion in real time feedback control systems design.

A new paradigm in control systems analysis and design

resulted, i.e., Networked Control Systems. Networked Con-
trol Systems (NCSs), are control systems whose control
loop is closed around a communications network. Here, the

feedback is no longer instantaneous as in classical control

systems. Examples of NCSs include: Automotive industry,

teleautonomy, teleoperation of robots, and automated man-

ufacturing systems. Including the network into the design of

systems has made it possible to increase mobility, reduce

the cost of dedicated cabling, ease upgrading of systems,

and render maintenance easier and cheaper. The drawback,

however, is that the complexity of analysis and design

increases manyfold (see [10] for an overview).

In this paper we explore another setting for networked

systems, specifically a hybrid system operating in a sub-

optimal fashion via a network. Our framework is general

enough to encompass several applications that have drawn

special attention over the past decades teleautonomous

robots, hybrid electric vehicles (HEV), and distributed fuel

cell systems.

Such scenarios encompass a set of plants that interact and

must be individually controlled (decentralized) and coordi-

nated by a supervisory controller through a communication

link to achieve some optimal performance. Assuming no

disturbances, in the simplest case, sensor measurements

to the supervisor are inherently delayed, and the control

signals issued by the supervisor undergo a similar delay.

Figure 1 illustrates the basic idea. The problem then is

to robustly solve a hybrid optimal control problem in the
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Fig. 1. Supervisory control of a multi-mode plant over a communication
network with delays.

presence of delayed measurements and delayed control

inputs. The approach here is to combine recent advances in

hybrid optimal control with the emerging work on model

predictive control (MPC) to achieve a viable solution to this

very important networked control system (NCS) problem.

II. PROBLEM STATEMENT AND PROPOSED APPROACH

We consider a plant that operates in one of a set of

possible structures at any one time. This necessitates two

control inputs: a continuous-valued input and a discrete-

valued switching input that selects the proper structure at

each instant of time. In the presence of state and input

constraints the objective is to minimize a cost functional

by appropriately selecting the structure and generating its

controls.

In the absence of communication network delays, the

problem can be solved by embedding the switched system

into a larger family of systems and then solving a more

general hybrid optimal control problem [3]. Implementation

of a solution requires instantaneous and continuous avail-

ability of the state measurements, which is not possible due

to the delays inherent in a real communication network.

Nevertheless, we assume that the supervisory controller

receives periodic updates of the plant state. These periodic

updates of the delayed state initialize a possible uncertain

prediction of the state trajectory for use in a MPC algorithm

that also accounts for the communication delay to the plant.

For the rest of this paper we consider, for notational

tractability, a switching plant model that consists of two pos-

sible modes of operation. However, the theoretical results

can be scaled to encompass n-modes. In our subsequent

analysis, we will use the notation pertinent to MPC: (i)

for any control signal u, u(t1|t2) is the value generated at
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(based on the information up to) time t2 and that is predicted

to be applied to the system at time t1(≥ t2); (ii) for any

state signal x, x(t1|t2) is the value generated at time t2 and

is estimated for time t1 (in this case t1 and t2 can be in

any ordering relationship).

A. Problem Formulation

Within the aforementioned framework, we assume that

the communication network imposes a constant delay h on

the communicated signals as shown in Figure 1. Moreover,

for minimizing the communication bandwidth, we assume

that the supervisory controller receives the plant state, over

the total optimization problem horizon [t0, tf ], only at times

tk ∈ {t0+h, t0+2h, ..., tf −2h}; therefore, the supervisory

controller receives an exact state measurement, x(tk − h).
Using x(tk −h), the supervisor predicts the state trajectory

forward in time and simultaneously solves an optimization

problem to generate the optimal input u� and switching

signal v� over the interval [tk + h, tk + h + Nf ], where

Nf is a suitable multiple of h and represents a variable

horizon. The interval of optimization begins with (tk+h) to

account for the communication delay from the supervisor to

the plant. In accordance with MPC strategies [6], [11], only

the “optimal” inputs u� and v� over the interval [tk+h, tk+
2h] are sent. The optimal control problem is then resolved

at (tk + h) for the interval [tk + 2h, tk + 2h + N ′
f ] where

N ′
f may be different from Nf . And the process repeats.

Of course, the time interval elapsed between successive

plant state transmissions may be different than the com-

munication delay. However, we make this assumption for

avoiding excessive notation. Without loss of generality, we

also assume that the computational time required to solve

the optimization problems at each step is equal to zero

(otherwise, the communication delay can be increased to in-

clude this time interval). Furthermore, the proposed method

can be appropriately modified for handling situations where

the communication delays on the receiving and transmitting

channels are unequal.

The two-switched system model adopted in this paper

has system state x(t) ∈ R
n at time t with dynamics

ẋ(t) = fv(t)(t, x(t), u(t)), x(t0) = x0 (1)

where at each t ≥ t0, v(t) ∈ {0, 1} is the switching control,

u(t) ∈ Ω ⊂ R
m is the control input constrained to the

convex and compact set Ω, and f0 and f1 are real vector-

valued functions, f0, f1 : R × R
n × R

m → R
n, of class

C1. The control inputs, v(t) and u(t), are both measurable

functions. The state of the system described by (1) does

not undergo jump discontinuities, an important assumption

in this formulation. The optimization functional over the

interval [t0, tf ] is: J(x, u, v) =
tf∫
t0

f0
v(t)(t, x(t), u(t))dt

where f0
0 , f0

1 : R × R
n × R

m → R are of class C1. The

objective is: minv,u J(x, u, v), subject to the constraints

(a) x(·) satisfies the (uncertain) model equation given by

(1), with a given x0;

(b) for each t ∈ [t0, tf ], v(t) ∈ {0, 1} and u(t) ∈ Ω,

in the presence communication delays, and exact knowledge

of the plant state x only at discrete instants, as described

above. Relaxation of the above exact knowledge assumption

is addressed later.

B. Proposed Suboptimal Solution

Our goal is to offer, in a deterministic context, a sub-

optimal solution to this problem. Admittedly, the optimiza-

tion problem is not rigorously stated as one has limited

information on the model uncertainties, and therefore, for

a given control input, one does not exactly know the

corresponding trajectory. Assuming certain structure on the

model uncertainties, a rigorous formulation is possible in

the context of stochastic optimal control. Remaining in a

deterministic context, we make use of the concepts of MPC

technique, whose advantages in dealing with uncertainties

have been underlined in the literature (for example [6]).

However, due to the delays in transmitting the control

signal, we cannot directly apply this technique. The adapted

strategy is described in the following.

As it usually occurs in engineering applications the plant

model (1) is not exactly known. The plant model used by

the supervisory controller is a nominal/estimation model

described by

˙̂x(t) = f̂v(t)(t, x̂(t), u(t)), v(t) ∈ {0, 1}. (2)

At each time instant tk ∈ {t0 + h, t0 + 2h, ..., tf − 2h}:

(i) The supervisory controller receives the exact plant state

x(tk − h) and can update its estimate (of the plant

model) made at time tk for time tk−h: x̂(tk−h|tk) =
x(tk − h);

(ii) Using the update x̂(tk − h|tk), and the control inputs

u([tk−h, tk]|tk−2h), v([tk−h, tk]|tk−2h) – generated

at time tk − 2h for the interval [tk − h, tk] – and

u([tk, tk +h]|tk−h), v([tk, tk +h]|tk−h) – generated

at time tk − h for the interval [tk, tk + h] –, the

supervisory controller estimates the plant state up to

the time instant tk +h. Having the initial state estimate

at tk + h, we can initiate the following optimization

problem, over the horizon Nf (> h),

minv,u

tk+h+Nf∫
tk+h

f0
v(τ |tk)(τ, x̂(τ |tk), u(τ |tk))dτ

subject to the constraints

(a) ˙̂x(τ |tk) = f̂v(τ |tk)(τ, x̂(τ |tk), u(τ |tk)), for τ ∈
[tk + h, tk + h + Nf ]

(b) for each τ ∈ [tk+h, tk+h+Nf ], v(τ |tk) ∈ {0, 1}
and u(τ |tk) ∈ Ω.

(iii) Solving the optimization problem in (ii) produces the

control signals u([tk +h, tk +h+Nf ]|tk) and v([tk +
h, tk+h+Nf ]|tk) which, due to the delay h are applied

to the plant on the desired interval [tk + h, tk + 2h].
The rigorously stated optimization problem at the second

step is solved using the method indicated in Section III.
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III. PIECEWISE ESTIMATED OPTIMAL SOLUTION

In this section, we solve the subproblem of step (ii) in

subsection II-B. This is a standard switched optimal control

problem. Our approach is to embed the switched (estimation

model) system (2) into a larger family of systems and to

reformulate the problem for the latter. The viability of the

approach is given by a certain relationship between the set

of trajectories of the switched and embedded systems.

A. Switched Optimal Control Problem and a Reformulation

In step (ii) of subsection II-B, the controls u([tk +h, tk +
h+Nf ]|tk), and v([tk +h, tk +h+Nf ]|tk) are the solution

to a standard switched optimal control problem:

Switched optimal control problem (SOCP): minimize

the cost JS(u, v) =
tk+h+Nf∫

tk+h

f0
v(t)(t, x̂(t), u(t))dt

over the controls u and v, subject to the constraints

(a) x̂(·) satisfies (2), with the initial condition x̂(tk +h|tk)
computed as mentioned at step (ii) in subsection II-B;

(b) for each t ∈ [tk + h, tk + h + Nf ], v(t) ∈ {0, 1} and

u(t) ∈ Ω.

For related problem formulations and approaches see Bran-

icky et al. [5], Giua et al. [8], Riedinger et al. [12], [13],

Sussman [15], Xu and Antsaklis [16].
The difficulty of the SOCP stems in the presence of both

continuous-time dyanmics–f̂0 and f̂1–and discrete events–
the switching instants. To overcome this difficulty we embed
the switching system (2) into a larger family of systems
as follows: let v(t) now take values in the interval [0, 1],
i.e. v(t) ∈ [0, 1], and let ui(t) define the control input

corresponding to vector field f̂i, i = 0, 1; then define the
family of systems parametrized by v(t) ∈ [0, 1] as

˙̂x(t) = [1 − v(t)]f̂0(t, x̂(t), u0(t)) + v(t)f̂1(t, x̂(t), u1(t)) (3)

with associated cost functional

JE(v, u0, u1) =

tk+h+Nf∫
tk+h

{
[1 − v(t)] · f0

0 (t, x̂(t), u0(t))

+v(t) · f0
1 (t, x̂(t), u1(t))

}
(4)

The optimal control problem of interest now becomes

Embedded optimal control problem(EOCP): minimize

the functional (4) over all functions v, u0, and u1, subject

to the following constraints:

(i) x̂(·) satisfies equation (3), with initial condition x̂(tk +
h|tk);

(ii) for each t ∈ [tk, tk + h + Nf ], v(t) ∈ [0, 1] and

u0(t), u1(t) ∈ Ω (convex and compact).

The EOCP is a classical optimization problem for which

we can study [2], [3] sufficient and necessary conditions for

optimality via the classical tools of optimal control theory.

The viability of our approach stems from the fact that the

set of trajectories of the system (2) is dense in the set

of trajectories of system (3). Each trajectory, x̂E , of (3)

can be approximated within any desired accuracy, ε, by a

trajectory, x̂S , of the (estimation model) switched system

(2) corresponding to a proper choice of the switching input

vε(·), with values in the set {0, 1}, and of the control input

uε(·).
Theorem 1: Let u0(t) ∈ Ω, u1(t) ∈ Ω, and v(t) ∈ [0, 1]

be a control triplet for the embedded system (3). Let both

systems, (2) and (3), have initial point x̂(tk + h|tk). Let

x̂E(·) be a trajectory for the system (3) corresponding to

u0(·), u1(·), v(·) on [tk + h, tk + h + Nf ]. Then, for each

ε > 0, there are controls vε(t) ∈ {0, 1} and uε(·) defined

on [tk +h, tk +h+Nf ], with the following properties: For

almost all t ∈ [tk + h, tk + h + Nf ], uε(t) ∈ Ω, and the

trajectory x̂S,ε(·) (of the switched system (2) corresponding

to the controls vε(·) and uε(·)) satisfies: for all t ∈ [tk +
h, tk + h + Nf ], |x̂S,ε(t) − x̂E(t)| < ε.

For a proof and a construction of the controls vε and uε

see [2], [3]. The crucial role in the justification of this

result is played by the Chattering Lemma as in [4], [7].

Since the integrands f0
0 and f0

1 of the cost functional

JE are of class C1, the approximating trajectory x̂S,ε (of

the switched system (2)) can be constructed such that

|JS(uε, vε) − JE(u0, u1, v)| < ε. Therefore, if x̂E is an

optimal trajectory for the EOCP, then the trajectories x̂S,ε

are suboptimal solutions for the SOCP.

B. Necessary Conditions for Optimality

Having motivated, in the previous sections, the study

of EOCP, we are interested in sufficient and necessary

conditions for optimality for EOCP. It can be shown (see

[2] and [3]) that both the assumptions made in Section II-

A and the satisfaction of the conditions S1–S4, specified

below, guarantee that the EOCP has a solution.

(S1) f0(t, x, z0) = A0(t, x) + B0(t, x) · z0;

(S2) f1(t, x, z1) = A1(t, x) + B1(t, x) · z1;

(S3) for each (t, x), the function f 0
0 (t, x, z0) is a convex

function of z0;

(S4) for each (t, x), the function f 0
1 (t, x, z1) is a convex

function of z1.

For the remaining of this section, we presume that EOCP

has a solution, (x̂�
E(t), u�

0(t), u�
1(t), v

�(t)). With the system

given in (3) and the cost functional given by (4) we associate

the Hamiltonian function H : R×R
n×R

m×R
m× [0, 1]×

R × R
n → R defined as

H(t, x, z0, z1, µ, p0, p) = p0[(1 − µ)f0
0 (t, x, z0) + µ

·f0
1 (t, x, z1)] + pT [(1 − µ)f̂0(t, x, z0) + µf̂1(t, x, z1)]

�
= µE1(t, x, z0, z1, p

0, p) + E2(t, x, z0, z1, p
0, p)

(5)

with the obvious definition of the functions E1 and E2.

Let Tk
�
= {t ∈ [tk + h, tk + h + Nf ]|

E1(t, x̂�
E(t), u�

0(t), u
�
1(t), λ

0, λ(t)) = 0}. It can be shown

([3]) that for almost all t ∈ [tk + h, tk + h + Nf ] \ Tk,

v�(t) ∈ {0, 1}.

Theorem 2: For almost all t ∈ [tk +h, tk +h+Nf ]\Tk,

(i) (MODE 0) If max
z0∈Ω

H(t, x̂�
E(t), z0, z1, 0, λ0, λ(t)) >

max
z1∈Ω

H(t, x̂�
E(t), z0, z1, 1, λ0, λ(t)), then v�(t) = 0
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and
˙̂x�
E(t) = f̂0(t, x̂�

E(t), u�
0(t))

λ̇(t) = −p0
[

∂f0
0

∂x

]
−

[
∂f̂0
∂x

]T

λ(t)
(6)

with the above Jacobians calculated at

(t, x̂�
E(t), u�

0(t)). The optimal control u�
1(t) is indeter-

minate in Ω, and u�
0(t) = arg max

z0∈Ω
[λ0f0

0 (t, x̂�
E(t), z0)

+λT (t)f̂0(t, x̂�
E(t), z0)].

(ii) (MODE 1) If max
z1∈Ω

H(t, x̂�
E(t), z0, z1, 1, λ0, λ(t)) >

max
z0∈Ω

H(t, x̂�
E(t), z0, z1, 0, λ0, λ(t)), then v�(t) = 1

and
˙̂x�
E(t) = f̂1(t, x̂�

E(t), u�
1(t))

λ̇(t) = −p0
[

∂f0
1

∂x

]
−

[
∂f̂1
∂x

]T

λ(t)
(7)

with the above Jacobians calculated at

(t, x̂�
E(t), u�

1(t)). The optimal control u�
0(t) is indeter-

minate in Ω, and u�
1(t) = arg max

z1∈Ω
[λ0f0

1 (t, x̂�
E(t), z1)

+λT (t)f̂1(t, x̂�
E(t), z1)].

(iii) If max
z1∈Ω

H(t, x̂�
E(t), z0, z1, 1, λ0, λ(t)) =

max
z0∈Ω

H(t, x̂�
E(t), z0, z1, 0, λ0, λ(t)), then either

v�(t) = 0 or v�(t) = 1, and the above corresponding

equations hold.

Proof: The above theorem is proved in [3].

In the singular cases the optimal switching control v�(t)
(with t ∈ Tk), may take values in the interval (0, 1). How-

ever, from the constraints on the system – input constraints,

state and costate equations (6),7) – it still may be possible to

take v�(t) ∈ {0, 1} for almost all t ∈ Tk, and one again can

obtain a solution to the SOCP. Recall that, in the singular

cases, if none of the solutions of the EOCP is of bang-

bang type, then the SOCP may or may not have a solution.

In such cases, suboptimal solutions of the SOCP may be

constructed as in [3].

IV. ERROR ANALYSIS

In this section we present some bounds pertaining to the

performance of the system, when there is a discrepancy

between the actual plant model and the estimation model

used by the supervisor to obtain estimates of the state of

the plant. Proved in [1], the following lemma is a slight

generalization of the Gronwall’s Inequality and is useful in

our development on the error bounds.

Lemma 1: Let ρ, α, and β be non-negative real valued

functions continuous on [0,∞], such that ρ(t) ≤ α(t) +
t∫

t0

β(s)ρ(s)ds α ≥ 0

for all t0, t in [0,∞). Let α, be monotonically increasing.

Then ρ(t) ≤ α(t) · e
t∫

t0

β(s)ds

.
Consider the plant given in (1) and the estimation model

(2). We assume that the difference between the two models

is upper bounded for a given state, i.e. for each t ∈ [t0, tf ]∣∣∣f(t, x, u) − f̂(t, x, u)
∣∣∣ ≤ g(t), (8)

with g integrable. Note that the input in both equations is
exactly the same since the supervisor knows the exact input
that it generated and transmitted to the plant. We make the
assumption that for each control input u(t) ∈ Ω the solution
of equation (2) is bounded. Let X be a compact subset of
R

n such that x(t) ∈ X for all t ∈ [t0, tf ]. Without loss of
generality, we assume that the set X is convex (otherwise
we can consider it as a subset of a convex (compact) set).

Since, for each t ∈ [t0, tf ] the function f̂0(t, ·, ·) is C1 on the
compact and convex set X ×Ω, it follows that the norm of
its Jacobian is bounded, and, upon application of Theorem
9.19 in [14], it follows that there is a function m(t) such
that

|f̂0(t, x1, u1) − f̂0(t, x2, u2)| ≤ m(t)

∣∣∣∣
[

x1

u1

]
−

[
x2

u2

]∣∣∣∣ (9)

for all x1, x2 ∈ X , and all u1, u2 ∈ Ω. We make the

assumption that the function m(·) is integrable. Without loss

of generality, we also assume that the function f̂1 satisfies

equation (9).

There are two scenarios that arise in such a setting. The

perfect scenario where fi(., ., .) ≡ f̂i(., ., .) for i = 0, 1,

which results in a perfect reconstruction of the state vector

and hence both functions will have the same value in a time

period of 2h after the system is turned on.
The more challenging scenario is when the system equa-

tions do not match exactly, which results in a discrepancy
between the state of the plant and that of the estimation
model. In this case, we need to obtain a bound on the
estimation error. Since the supervisory controller receives
updates on the plant states every h seconds, it is sufficient to
study the estimation error on an interval [t, t+h], assuming
that, at time t, the supervisory controller receives the plant
state at time t− h; i.e. x̂(t− h|t) = x(t− h). Utilizing the
control inputs on the interval [t − h, t], u([t − h, t]|t − 2h)
and v([t− h, t]|t− 2h), and those on the interval [t, t + h],
u([t, t + h]|t − h) and v([t, t + h]|t − h), along with the
triangle inequality and the bounds given by (8) and (9), we
obtain that, for each τ ∈ [t, t + h],

|x(τ)− x̂(τ |t)| ≤
τ∫

t−h

g(s)ds +

τ∫
t−h

m(s)|x(s)− x̂(s|t)|ds (10)

Observe that the above inequality holds in fact for every
τ ∈ [t−h, t + h] (although we are interested what happens

only on the interval [t, t + h]). The function
τ∫

t−h

g(s)ds

is continuous, non-negative and monotonically increasing
(because g is non-negative). Using Lemma 1, it follows that

|x(τ) − x̂(τ |t)| ≤
⎛
⎝

τ∫
t−h

g(s)ds

⎞
⎠ ·

⎛
⎝e

τ∫

t−h

m(s)ds

⎞
⎠ (11)

for all τ ∈ [t, t + h]. Notice that in (11), if g = 0 then the

error is zero; expectedly, since in this case the estimator is

an exact replica of the plant model (see (8)). If the delay h
equals zero, the error at each time τ ∈ [t, t+h] is bounded

by

(
τ∫
t

g(s)ds

)
·
(

e

τ∫

t

m(s)ds
)

. This estimation error occurs

because for τ ∈ [t, t+h] the latest available information on

the plant state is x(t).
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V. EXAMPLE

In this section, we use the technique developed in this

work to solve a version of the optimal control problem

considered in [9]. The switched system model considered

there is a crude two-dimensional model of a car with two

gears. For the problem considered here, the state, x is the

velocity of the car (according to some reference coordinate

system), with some gears efficiencies, g0(ζ) and g1(ζ), as

plotted in Figure 2.
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Fig. 2. Gear efficiencies

The dynamics corresponding to each mode are

ẋ(t) = fv(t)(t, x(t), u(t)) = gv(t)(x(t)) · u(t) + r(t) · x2

(12)

where v(t) ∈ {0, 1}, and r(t) is a random function with

values in the interval [−0.06,+0.03], which roughly models

the road imperfections, drag forces, etc., and the input-

throttle command, u, is constrained to the set Ω = [−1, 1].
Initially, the car is at rest, i.e. x(0) = 0, and is being

controlled through a communication network with delay

h = 0.1. The goal is to track with minimum control energy

the following velocity profile: xdes(t) = 0.5t on [0, 2],
xdes(t) = 1 on [2, 4], and xdes(t) = 0.5(4 − t) + 1 on

[4, 6]. Accordingly, the performance measure is chosen to

be JS(v, u)=
6∫
0

{
10 · [x(t) − xdes(t)]2 + u2(t)

}
dt.

On the other side of the network, the supervisor con-

trolling the car has only access to the actual state value

periodically and uses for the optimization problem the

following dynamics of the estimate model:

˙̂x(t) = f̂v(t)(t, x̂, u) = gv(t)(x̂) · u, v(t) ∈ {0, 1} (13)

Applying the embedding technique discussed earlier to the

estimation model results with the following state equation:

˙̂x(t) = [1−v(t)]·g0(x̂(t))·u0(t)+v(t)·g1(x̂(t))·u1(t) (14)

where v(t) ∈ [0, 1] and the controls u0(t) and u1(t)
are constrained to [−1, 1]. The functional cost associated

with the embedded system is JE(v, u) =
6∫
0

{
10 · [x̂(t) −

x̂des(t)]2+[1 − v(t)]u2
0(t) + v(t)u2

1(t)
}

dt.

For illustrating the suboptimal control technique, we

consider that the supervisory controller solves the MPC

problem over the following intervals (of type [tk + h, tk +

h+Nf ], as mentioned in Section II-A): [0.1, 2.1], [2.1, 4.1],
and [4.1, 6].

In the following, on each of the aforementioned subin-

tervals, an optimization is solved as indicated in step

(ii) of Section II-B. Note that on each of these subin-

tervals an optimal solution exists, which is denoted by

(x̂�(t), u�
0(t), u

�
1(t), v

�(t)). The Hamiltonian of system (14)

is H : R
7 → R

H(t, x, z0, z1, µ, p0, p) =
µ

{
p0[z2

1 − z2
0 ] + p[g1(x)z1 − g0(x)z0]

}
+p0

{
[(x − xdes(t)]2 + z2

0

}
+ pg0(x)z0 (15)

Except on the last subinterval, the final state x̂(tk + h +
Nf ) is free. Applying the transversality conditions ([4],

page 190) it follows that λ(tf + h + Nf ) = 0, which in

turns implies, from the Maximum Principle, that λ0 = −1.

On each subinterval, the solution (x̂�(t), u�
0(t), u

�
1(t), v

�(t))
of the EOCP is not guaranteed to be a solution of the SOCP.

However, that is guaranteed by the following proposition.

Proposition 1: There is an optimal switching control

v�(t) with values in the set {0, 1}. (See [1] for the proof)

A particular aspect of this example is that the optimal

controls, u�
0 and u�

1, can be explicitly computed, as func-

tions of the co-state, λ(t). Therefore, if the initial value

of lambda, λ(tk + h), and the initial state, x̂�(tk + h),
are known, the optimal controls and estimated optimal

trajectories can be determined using the above equations for

the two modes of operation. But, due to model uncertainties,

it is not possible to exactly know the state of the system

and therefore it is not possible to know beforehand the

values λ(tk + h). However, for this example, the on-line

computational burden can be reduced as described below.

The following computations are performed off-line.

(a) Since the delay h = 0.1, on the interval [0, 0.1] the

control is zero; hence the velocity at t = 0.1 is zero.

(b) Using x̂�(0.1) = 0, the costate, λ(0.1) can be deter-

mined numerically by comparing the costs associated

with the trajectories and controls for values of λ
in an appropriately chosen interval. This is achieved

by generating the trajectories and controls over the

interval [0.1, 2.1] for each λ in an appropriately chosen

(via simulations in this case) set.

(c) Using λ(0.1), the corresponding estimated optimal

trajectory, x̂�, on [0.1, 2.1], and the bounds on the

uncertainties, an interval is determined for the state

x(2.1) of system (12). For each value of x in this

interval, the optimal value of λ is generated as in

described at (b), but now the problem is considered

on the interval [2.1, 4.1]. Therefore, we numerically

obtain a correspondence between the possible values

of x(2.1) and the corresponding λ(2.1) which generate

the optimal controls on the interval [2.1, 4.1]
(d) This part is similar to part (c), but it is performed

for the interval [4.1, 6]. Another difference is that the
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correspondence between x and λ, at t = 4.1, is

determined such that x(6) = 0.

The on-line procedure for the suboptimal control of this

networked system is described in the following. On the

interval [0, 2.1], the optimal controls are computed off-

line, since the initial state of (12) is known exactly. At

t = 2, the supervisory controller receives the system state

x(1.9). Therefore, as explained at step (ii) in Section II-B,

the state of the system (12) can be estimated. At t = 2,

using the estimated state x̂(2.1), the value of λ(2.1) is

determined based on the off-line correspondence calculated

as aforementioned at step (b). Using this value of λ(2.1)
the optimal controls on the interval [2.1, 4.1] are generated.

These computations require a small amount of time and,

hence, are suitable for the on-line control scheme. At t = 4,

the supervisory controller receives the state x(3.9) (of the

system (12)), and the procedure for generating the optimal

controls on [4.1, 6.1] follows the same steps as for the the

interval [2.1, 4.1].
The estimated trajectory (of the system (13)) and the

trajectory of the system (12) are plotted in Figure 3. The

discontinuities present at t = 2 and t = 4 in the estimated

velocity are due to the updates based on the information

received at these instances. The controls are illustrated in

Figure 4. As expected, the gear switchings occur when

the estimated velocity equals 0.5, where the two gear

efficiencies are equal. Observe that the car velocity at t = 6
is slightly smaller than zero. This is due to the disturbances

(uniformly distributed in [−0.06, 0.03]). For meeting the

final constraint, the control u(t) can be set to zero as soon as

the velocity equals zero. Finally, for this problem the overall

estimated cost is 2.9702 and the overall cost associated with

the trajectory of system (12) is 3.0790.
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Fig. 3. Desired (dashed), Estimated (solid, upper), and Real (solid,
bottom) Trajectories

VI. CONCLUSIONS

In this paper we solve the hybrid optimal switching

control problem with delays introduced by a communication

network that resides between the multi-mode plant and the

supervisor. Due to the presence of delays, only a suboptimal

solution can be obtained via utilizing a model-predictive

approach and solving the optimal switching problem over
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v(
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−1
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0

0.5

1
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Fig. 4. Suboptimal Controls

subintervals. We illustrated our approach through a gear-

switching example with input constraints. For future work

we propose expanding our approach to include information

losses between the plant and the supervisor, and studying

the robustness of our method in that context.
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