
Implementation of the Load Balancing Algorithm
over a Local Area Network and the Internet

J. Ghanem, C. T. Abdallah, M. Hayat, S. Dhakal, J.D. Birdwell, J. Chiasson, and Z. Tang∗

Electrical and Computer Engineering Department ∗Department of Electrical and Computer Engineering
MSC01 1100 University of Tennessee

University of New Mexico Knoxville, TN 37996-2100 USA
Albuquerque, NM 87131-0001 {birdwell,chiasson,ztang}@utk.edu

{jean,chaouki,hayat,dhakal}@eece.unm.edu

Abstract— In this paper, experimental evaluation of the
load balancing algorithm in real environments is presented.
we emphasize on the effects of delays in the exchange of
information among nodes, and the constraints these effects
impose on the design of a load balancing strategy. two test-
beds in two different real environments have been built; The
first implementation was over a local area network whereas the
second one was over Planet-Lab. The results show the effect
of the network delays and variances in the tasks processing
time on choosing adequate gain values for the load balancing
algorithm.

I. INTRODUCTION

Parallel computer architectures utilize a set of com-
putational elements (CE) to achieve performance that is
not attainable on a single processor, or CE, computer. A
common architecture is the cluster of otherwise independent
computers communicating through a shared network. To
make use of parallel computing resources, problems must
be broken down into smaller units that can be solved
individually by each CE while exchanging information
with CEs solving other problems. For a background on
mathematical treatments of load balancing, the reader is
referred to [1][2][3]. Effective utilization of a parallel
computer architecture requires the computational load to be
distributed more or less evenly over the available CEs. The
qualifier “more or less” is used because the communications
required to distribute the load consume both computational
resources and network bandwidth. A point of diminishing
returns exists. The distribution of computational load across
available resources is referred to as the load balancing
problem in the literature. Various taxonomies of load bal-
ancing algorithms exist. Direct methods examine the global
distribution of computational load and assign portions of the
workload to resources before processing begins. Iterative
methods examine the progress of the computation and the
expected utilization of resources, and adjust the workload
assignments periodically as computation progresses. As-
signment may be either deterministic, as with the dimension
exchange/diffusion [4] and gradient methods, stochastic, or

This work is supported by the National Science Foundation under In-
formation Technology Research (ITR) grant No. ANI-0312611. Additional
support was received from the National Science Foundation through grant
No. INT-9818312.

optimization based. A comparison of several deterministic
methods is provided by Willeback-LeMain and Reeves [5].

The present work focuses on the experimental aspects
of the load balancing in real environments, highlighting the
effects of delays in the exchange of information among CEs,
and the constraints these effects impose on the design of
a load balancing strategy. Two test-bed were implemented
in different environments; The first test-bed involved three
machines connected by a switch in local area network
(LAN) setting and the second test-bed involved three nodes
geographically distributed and connected by the Internet. In
the latter setting, the nodes used are part of the Planet-Lab
research network. More information about Planet-Lab can
be found at www.planet-lab.org.

II. MATHEMATICAL MODEL

In this section, continuous time models are developed to
model load balancing among a network of computers. To
introduce the basic approach to load balancing, consider a
computing network consisting of n computers (nodes) all
of which can communicate with each other. At start up, the
computers are assigned an equal number of tasks. However,
in some applications when a node executes a particular task
it can in turn generate more tasks so that very quickly the
loads on various nodes become unequal. To balance the
loads, each computer in the network sends (broadcasts) its
queue size q j(t) to all other computers in the network. A
node i receives this information from node j delayed by
a finite amount of time τi j; that is, it receives q j(t − τi j).
Each node i then uses this information to compute its local
estimate1 of the average number of tasks in the queues of the
n computers in the network. Based on the most recent obser-
vations, the simple estimator

(
∑n

j=1 q j(t − τi j)
)

/n (τii = 0)

of the network average is used by the ith node. Node i
then compares its queue size qi(t) with its estimate of the

network average as
(

qi(t)−
(

∑n
j=1 q j(t − τi j)

)
/n

)
and, if

this is greater than zero, the node sends some of its tasks
to the other nodes. If it is less than zero, no tasks are sent.
Further, the tasks sent by node i are received by node j

1It is an estimate because at any time, each node only has the delayed
value of the number of tasks in the other nodes.

43rd IEEE Conference on Decision and Control
December 14-17, 2004
Atlantis, Paradise Island, Bahamas

0-7803-8682-5/04/$20.00 ©2004 IEEE

FrA03.2

4199

with a delay hi j. The controller (load balancing algorithm)
decides how often to do load balancing (transfer tasks
among the nodes) and how many tasks are to be sent to each
node. An important issue considered here is the effect of
delays on system performance. Specifically, the continuous
time models developed here represent our effort to capture
the effect of the delays in load balancing techniques and
were developed so that system theoretic methods could be
used to analyze them. The basic mathematical model of a
given computing node for load balancing is given by

dxi(t)
dt

= λi −µi +ui(t)−
n

∑
j=1

pi j
tpi

tp j

u j(t −hi j)

yi(t) = xi(t)−
∑n

j=1 x j(t − τi j)

n
(1)

ui(t) = −Kisat(yi(t)) ; pi j � 0, p j j = 0,
n

∑
i=1

pi j = 1

where

sat(y) = y if y � 0 (2)

= 0 if y < 0. (3)

In this model we have
• n is the number of nodes.
• xi(t) is the expected waiting time experienced by a task

inserted into the queue of the ith node. With qi(t) the
number of tasks in the ith node and tpi the average time
needed to process a task on the ith node, the expected
(average) waiting time is then given by xi(t) = qi(t)tpi .
Note that x j/tp j = q j is the number of tasks in the node
j queue. If these tasks were transferred to node i, then
the waiting time transferred is q jtpi = x jtpi/tp j , so that
the fraction tpi/tp j converts waiting time on node j to
waiting time on node i.

• λi ≥ 0 is the rate of generation of waiting time on
the ith node caused by the addition of tasks (rate of
increase in xi)

• µi ≥ 0 is the rate of reduction in waiting time caused
by the service of tasks at the ith node and is given
by µi ≡ (1× tpi)/tpi = 1 for all i if xi(t) > 0, while if
xi(t) = 0 then µi � 0, that is, if there are no tasks in
the queue, then the queue cannot possibly decrease.

• ui(t) is the rate of removal (transfer) of the tasks from
node i at time t by the load balancing algorithm at
node i. Note that ui(t) ≤ 0.

• pi ju j(t) is the rate at which node j sends waiting time
to node i at time t where pi j � 0,∑n

i=1 pi j = 1 and
p j j = 0. That is, the transfer from node j of expected
waiting time

∫ t2
t1

u j(t)dt in the interval of time [t1, t2] to
the other nodes is carried out with the ith node receiv-
ing the fraction pi j

(
tpi/tp j

)∫ t2
t1

u j(t)dt where the ratio
tpi/tp j converts the task from waiting time on node j

to waiting time on node i. As ∑n
i=1

(
pi j

∫ t2
t1

u j(t)dt
)

=∫ t2
t1

u j(t)dt, this results in removing all of the waiting
time

∫ t2
t1

u j(t)dt from node j. The quantity −pi ju j(t −

hi j) is the rate of increase (rate of transfer) of the
expected waiting time (tasks) at time t from node j
by (to) node i where hi j (hii = 0) is the time delay for
the task transfer from node j to node i.

• The quantities τi j (τii = 0) denote the time delay for
communicating the expected waiting time x j from node

j to node i. The quantity xavg
i =

(
∑n

j=1 x j(t − τi j)
)

/n

is the estimate (due to the delays) by the ith node of
the average waiting time of the network and is referred
to as the local average (local estimate of the average).

In this model, all rates are in units of the rate of change of
expected waiting time, or time/time which is dimensionless.
As ui(t) ≤ 0, node i can only send tasks to other nodes
and cannot initiate transfers from another node to itself.
A delay is experienced by transmitted tasks before they
are received at the other node. The control law ui(t) =
−Kisat(yi(t)) states that if the ith node output xi(t) is

above the local average
(

∑n
j=1 x j(t − τi j)

)
/n, then it sends

data to the other nodes, while if it is less than the local
average nothing is sent. The jth node receives the fraction∫ t2

t1
p ji

(
tpi/tp j

)
ui(t)dt of transferred waiting time

∫ t2
t1

ui(t)dt
delayed by the time hi j.

A. Specifying the pi j

One important detail remains unspecified, namely the
exact form of the pi j for each sending node i. One approach
is to choose them as constant and equal

pi j = 1/(n−1) for j �= i; pii = 0 (4)

where it is clear that p ji � 0,∑n
i=1 pi j = 1 . Another approach

is to use the local information of the waiting times xi(t), i =
1, ..,n to set their values. The quantity xi(t − τ ji)− xavg

j
represents what node j estimates the waiting time in the
queue of node i is with respect to the local average of node
j. If queue of node i is above the local average, then node
j does not send tasks to it. Node j repeats this computation
for all the other nodes and then portions out its tasks among
the other nodes according to the amounts they are below the
local average, that is,

pi j �
sat

(
xavg

j − xi(t − τ ji)
)

∑sat
(

xavg
j − xi(t − τ ji)

) . (5)

If ∑
i � i �= j

sat
(

xavg
j − xi(t − τ ji)

)
= 0, then pi j are set to 0.

Remark If the denominator ∑
i � i �= j

sat
(

xavg
j − xi(t − τ ji)

)

is zero, then xavg
j − xi(t − τ ji) ≤ 0 for all i �= j. However,

∑
i � i �= j

(
xavg

j − xi(t − τ ji)
)

+ xavg
j − x j(t) = 0

which implies

xavg
j − x j(t) = − ∑

i � i �= j

(
xavg

j − xi(t − τ ji)
)

> 0.

4200

That is, if the denominator is zero, the node j is not greater
than the local average, so u j(t) = −Kjsat(y j(t)) = 0 and is
therefore not sending out any tasks.

III. EXPERIMENTS OVER A LOCAL AREA NETWORK

A parallel machine has been built to implement an exper-
imental facility for evaluation of load balancing strategies.
A root node communicates with k groups of computer net-
works. Each of these groups is composed of n nodes (hosts)
holding identical copies of a portion of the database. (Any
pair of groups correspond to different databases, which
are not necessarily disjoint. A specific record, or DNA
profile, is in general stored in two groups for redundancy
to protect against failure of a node.) Within each node,
there are either one or two processors. In the experimental
facility, the dual processor machines use 1.6 GHz Athlon
MP processors, and the single processor machines use 1.33
GHz Athlon processors. All run the Linux operating system.
Our interest here is in the load balancing in any one group
of n nodes/hosts. The database is implemented as a set
of queues with associated search engine threads, typically
assigned one per node of the parallel machine. The search
requests are created not only by the database clients; the
search process also creates search requests as the index tree
is descended by any search thread. An important point is
that the actual delays experienced by the network traffic in
the parallel machine are random. Work has been performed
to characterize the bandwidth and delay on unloaded and
loaded network switches, in order to identify the delay
parameters of the analytic models and is reported in [9][10].
The value τ = 200 µ sec used for simulations represents
an average value for the delay and was found using the
procedure described in [10]. The interest here is to compare
the experimental data with that from the three models
previously developed. To explain the connection between
the control gain Ki and the actual implementation, recall that
the waiting time is related to the number of tasks as xi(t) =
qi(t)tpi where tpi is the average time to carry out a task.
The continuous time control law is ui(t) = −Ksat(yi(t))
where ui(t) is the rate of decrease of waiting time xi(t) per
unit time. Consequently, the gain Ki represents the rate of
reduction of waiting time per second in the continuous time
model. Also, yi(t) =

(
qi(t)−

(
∑n

j=1 q j(t − τi j)
)

/n
)

tpi =

ri(t)tpi where ri(t) is simply the number of tasks above
the estimated (local) average number of tasks and, as the
interest here is the case yi(t) > 0, consider u(t) =−Kiyi(t).
With ∆t the time interval between successive executions
of the load balancing algorithm, the control law says that
a fraction of the queue Kzri(t) (0 < Kz < 1) is removed
in the time ∆t so the rate of reduction of waiting time is
−Kzri(t)tpi/∆t = −Kzyi(t)/∆t so that

u(t) = −
Kzyi(t)

∆t
=⇒ Ki =

Kz

∆t
. (6)

This shows that the gain Ki is related to the actual imple-
mentation by how fast the load balancing can be carried

out and how much (fraction) of the load is transferred.
In the experimental work reported here, ∆t actually varies
each time the load is balanced. As a consequence, the
value of ∆t used in (6) is an average value for that run.
The average time tpi to process a task is the same on all
nodes (identical processors) and is equal 10µ sec while the
time it takes to ready a load for transfer is about 5µ sec .
The initial conditions were taken as q1(0) = 6000,q2(0) =
4000,q3(0) = 2000 (corresponding to x1(0) = q1(0)tpi =
0.06,x2(0) = 0.04,x3(0) = 0.02). All of the experimental
responses were carried out with constant pi j = 1/2 for i �= j.

Figures 1, 2, 3 are plots of the responses ri(t) = qi(t)−(
∑n

j=1 q j(t − τi j)
)

/n for i = 1,2,3 (recall that yi(t) =

ri(t)tpi) for Kz = 0.5, 0.3 and 0.2 respectively. Figure 4

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

Fig. 1. Response of the load balancing algorithm. The average value of
the gains are (Kz = 0.5) K1 = 6667,K2 = 4167,K3 = 5000 (constant pi j).

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

Fig. 2. Response of the load balancing algorithm. The average value of
the gains are (Kz = 0.3) K1 = 2400,K2 = 7273,K3 = 2500 (constant pi j).

summarizes the data from several experimental runs of the
type shown in Figures 1, 3, 2. For Kz = 0.1,0.2,0.3,0.4,0.5,
ten runs were made and the settling time (time to load
balance) were determined. These are marked as small
horizontal ticks on Figure 4. (For all such runs, the initial
queues were the same and equal to q1(0) = 600,q2(0) =
400,q3(0) = 200. For each value of Kz, the average settling
time for these ten runs was computed and is marked as a
dot on given on Figure 4. For values of Kz = 0.6 and higher
(with increments of 0.1 in Kz), consistent results could not

4201

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

Fig. 3. Response of the load balancing algorithm. The average value of
the gains are (Kz = 0.2) K1 = 1600,K2 = 2500,K3 = 2857 (constant pi j).

be obtained. In many cases, ringing extended throughout the
experiment’s time interval (200 miliseconds). For example,

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

45

Kz − portion to send

Ti
m

e
to

 b
al

an
ce

 (m
s)

The time to achieve balance vs the sending portion Kz

average time

Fig. 4. Summary of the load balance time as a function of the gain Kz

Figure 5 shows the plots of the queue length less the
local queue average for an experimental run with Kz = 0.6
where the settling time is approximately 7 milliseconds. In
contrast, Figure 6 shows the experimental results under the
same conditions where persistent ringing regenerates for 40
milliseconds. it was found the response was so oscillatory
that a settling time was not possible to determine accurately.
However, Figure 4 shows that one desires to choose the gain
to be close to 0.5 to achieve a faster response time without
breaking into oscillatory behavior.

IV. EXPERIMENTS OVER PLANET-LAB

A distributed system has been developed to validate the
theoretical work and to assess different load balancing
policies in a real environment. The system consists of
several nodes running the same code. The nodes are part
of Planet-Lab, a planetary-scale network involving more
than 350 nodes positioned around the globe and connected
via the Internet. The application used to illustrate the load
balancing process was matrix multiplication, where one task
is defined as the multiplication of one row by a static matrix
duplicated on all nodes (3 nodes in our experiment). The
size of the elements in each row was generated randomly

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40

que
ue

len
gth

 - a
ver

age
 es

tim
ate

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

Fig. 5. Kz = 0.6 - Settling time is approximately 7 milliseconds.

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40

que
ue

len
gth

 - a
ver

age
 es

tim
ate

time (ms)

Comparison of local tracking responses on node01 - node03

node01
node02
node03

Fig. 6. Kz = 0.6 These are the same conditions as Figure 5, but now the
ringing persists.

from a specified range which made the execution time of a
task variable. As for the communication part of the program,
UDP was used to exchange queue size information among
the nodes and TCP was used to transfer the data or tasks
from one machine to another.

To match the experimental settings of the previous sec-
tions, 3 nodes were used; node1 at the University of New
Mexico, node2 in Taipei-Taiwan and node3 in Frankfurt-
Germany. As for the load balancing policy, the same pa-
rameter values were also used; for instance all pi j were
set to 1/2 for i �= j. The initial parameters and settings for
the experiment are summarized in table I. Throughout the
experiment, network statistics related to transmission rates

node 1 node 2 node 3

10.2 ms

2.5 ms

150 ms

50 ms

Average Task Processing Time t pi

Standard Deviation for t pi

Interval between load balancing instances ∆t

Interval between 2 comm. transmissions

Frankfurt -
Germany

Initial
Distribution

6000 tasks 4000 tasks 2000 tasks

Location
University of
New Mexico

(US)

Taipei -
Taiwan

TABLE I

PARAMETERS AND SETTINGS OF THE EXPERIMENT

4202

Roundtrip
delay τij

Data
transmisison rate

Average
Transmission of
one Task

n1 - n2 215 ms 1.34 KB/s 14 ms
n1 - n3 200 ms 1.42 KB/s 16 ms
n2 - n3 307 ms 1.03 KB/s 20 ms

TABLE II

AVERAGE NETWORK DELAYS AND TRANSMISSION RATES.

and delays were collected. The averages of the parameters
are shown in table II. Large delays were observed in the
network due to the dispersed geographical location of the
nodes. Moreover, the transmission rates detected between
the nodes were very low mainly because the amount of
data exchanged in bytes is small. Indeed, the average size
of data needed to transmit a single task was 20 bytes, which
made the observed transmission rates not exactly accurate
in the presence of large communication delays.

In order to observe the behavior of the system under
various gains, several experiments were conducted for dif-
ferent gain values Kz ranging from 0.1 to 1. Fig. 7 is a
plot of the responses ri(t) corresponding to each node i
where the gain Kz was set to 0.3. Similarly, Fig. 8 shows
the system response for gain Kz equal to 0.5. Figure 9
summarizes several runs corresponding to different gain
values. For each Kz = 0.1,0.2,0.3,0.4,0.5,0.6,0.7, ten runs
were made and the settling times (time to load balance)
were determined. For gain values higher than 0.8, consistent
results could not be obtained. For instance, in most of the
runs no settling time could be achieved. However, when the
observed network delays were stable, the system response
was steady and converged quickly to a balanced state when
Kz is equal to 0.8 (Figure 10. As previously indicated,
this scenario wasn’t frequently seen. The system behavior
in these set of experiments does not exactly match, for
the same gain value, the results obtained in the previous
sections, due to the difference in network topology and
delays. For instance, the ratio between the average delay
and the task process time is 20 (200µs/10µs) for the LAN
setting and 12 (120ms/10ms) for the distributed setting.
This fact is one of the reasons why ringing is observed
earlier (for Kz = 0.6) in the LAN experiment whereas under
Planet-Lab unstable responses were observed starting Kz =
0.8. The previous experiments have been conducted under
normal network conditions stated in Table II. However,
another set of experiments was conducted at a different
time where the network condition worsens and larger delays
were observed. In particular, the data transmission rate
between node 2 and node 3 dropped from 1.03KB/s to
407B/s. Figures 11 and 12 show the system responses for
gains Kz = 0.4 and Kz = 0.8 respectively. These experiments
clearly show the negative effect of the delay on the stability
of the system. Nevertheless, we can see that with a low gain
namely Kz = 0.4, a settling time can be identified at around
22ms. On the other hand, when the gain was set to 0.8,

Excess Load Vs Time, Gain Kz=0.3

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Time (s)

q
u

eu
e

le
n

g
th

 -
 q

u
eu

e
av

er
ag

e

Node1
Node2
Node3

Fig. 7. Experimental response of the load balancing algorithm under large
delays. gain Kz = 0.3 and pi j = 0.5.

Excess Load Vs Time for Gain Kz=0.5

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Time (s)

qu
eu

e
le

ng
th

 -
 lo

ca
l q

ue
ue

 a
ve

ra
ge

Node1
Node2
Node3

Fig. 8. Experimental response of the load balancing algorithm under large
delays. gain Kz = 0.5 and pi j = 0.5.

Time to achieve balance Vs the sending Portion Kz

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Kz - portion to send

T
im

e
to

 b
al

an
ce

 (
s)

Average Time

Fig. 9. Summary of the load balancing time as function of the gain Kz.

excess load Vs Time, Gain Kz=0.8

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Time (s)

q
u

eu
e

le
n

g
th

 -
 q

u
eu

e
av

er
ag

e

Node1

Node2
Node3

Fig. 10. Experimental response of the load balancing algorithm under
large delays. gain Kz = 0.8 and pi j = 0.5.

4203

excess load Vs time, gain Kz=0.4

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Time (s)

q
u

eu
e

le
n

g
th

 -
 q

u
eu

e
av

er
ag

e
Node1
Node2
Node3

Fig. 11. Experimental response of the load balancing algorithm under
large delays. gain Kz = 0.4 and pi j = 0.5.

excess load Vs time, gain Kz = 0.8

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Time (s)

qu
eu

e
le

ng
th

 -
 q

ue
ue

 a
ve

ra
ge

 '

Node 1
Node 2
Node 3

Fig. 12. Experimental response of the load balancing algorithm under
large delays. gain Kz = 0.8 and pi j = 0.5.

the system did not reach a stable point as shown by the
nodes’ ringing responses ri(t) (Figure 12). As this point,
only the effect of the delay on the stability of the system
was tested. To experiment the effect of the variability of
the task processing time on the system behavior, the matrix
multiplication application was adjusted in a way to get the
following results; the average task processing time was kept
at 10.2ms but the standard deviation became 7.15ms instead
of 2.5ms. Figures 13 and 14 show the respective system
responses for gains Kz = 0.3 and Kz = 0.8. Comparing
Figures 7 and 13, we can see that in the latter case, some
ringing persists and the system did not completely stabilize.
On the other hand, setting the gain Kz = 0.8 led the system
to accommodate with the variances in the task processing
time.

Excess Load Vs Time, Gain Kz=0.3, Variant Task Process Time

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Time (s)

q
u

eu
e

le
n

g
th

 -
 q

u
eu

e
av

er
ag

e

Node1
Node2
Node3

Fig. 13. Experimental response of the load balancing algorithm under
large variance in the tasks processing time. gain Kz = 0.3 and pi j = 0.5.

Excess Load Vs Time, Gain Kz=0.8, Variant Task Process Time

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Time(s)

q
u

eu
e

le
n

g
th

 -
 q

u
eu

e
av

er
ag

e

Node1
Node2
Node3

Fig. 14. Experimental response of the load balancing algorithm under
large variance in the tasks processing time. gain Kz = 0.8 and pi j = 0.5.

V. SUMMARY AND CONCLUSIONS

In this paper, a nonlinear time-delay model of the load
balancing algorithm was presented. Experiments have in-
dicated a correlation between the continuous time models
and the actual implementation. Further, the results drawn
from the two test-beds were consistent with each other.
In particular, high gains were shown to be inefficient and
therefore introduce drawbacks in systems with large delays.
Conversely, systems with low gain values could not cope
with the variability introduced by the tasks processing
time. Therefore, one should avoid the limits and carefully
choose an adequate gain value. Future work will consider
incorporating the network delays as detected by the system
in the fraction coefficients pi j in order to quickly stabilize
the system and therefore decrease the overall completion
time.

REFERENCES

[1] E. Altman and H. Kameda, “Equilibria for multiclass routing in mult-
agent networks”, December 2001.Orlando, FL USA.

[2] C.K. Hisao Kameda, Jie Li and Y. Zhang “Optimal Load Balancing
in Distributed Computer Systems.”, Springer, 1997. Great Britain.

[3] H. Kameda, I. R. El-Zoghdy Said Fathy, and J. Li, A performance
comparison of dynanmic versus static load balancing policies in a
mainframe, in Proceedings of the 2000 IEEE Conference on Decision
and Control, pp. 14151420, December 2000. Sydney, Australia.

[4] A. Corradi, L. Leonardi, and F. Zambonelli, Diffusive load-balancing
polices for dynamic applications, IEEE Concurrency, vol. 22, pp. 979
993, Jan-Feb 1999.

[5] M. Willebeek-LeMair and A. Reeves, Strategies for dynamic load
balancing on highly parallel computers, IEEE Transactions on Par-
allel and Distributed Systems, vol. 4, no. 9, pp. 979993, 1993.

[6] J. D. Birdwell, J. Chiasson, Z. Tang, C. T. Abdallah, M. Hayat, Z.
Tang, and T. Wang, Dynamic time delay models for load balancing
Part I: Deterministic models, in CNRS-NSF Workshop: Advances in
Control of Time-Delay Systems, Paris France, January 2003. Also, to
appear in an edited book by Springer-Verlag, Keqin Gu and Silviu-
Iulian Niculescu, editors.

[7] C. Abdallah, J. Birdwell, J. Chiasson, V. Churpryna, Z. Tang, and
T. Wang, Load balancing instabilities due to time delays in parallel
computation, in Proceedings of the 3rd IFAC Conference on Time
Delay Systems, December 2001. Sante Fe NM.

[8] J. D. Birdwell, J. Chiasson, C. T. Abdallah, Z. Tang, N. Alluri, and
T. Wang, The effect of time delays in the stability of load balancing
algorithms for parallel computations, in Proceedings of the 42nd
IEEE CDC, December 2003. Maui, Hi.

[9] P. Dasgupta, Performance Evaluation of Fast Ethernet, ATM and
Myrinet under PVM, MS Thesis. University of Tennesse, 2001.

[10] P. Dasgupta, J. D. Birdwell, and T. W. Wang, Timing and congestion
studies under PVM, in Tenth SIAM Conference on Parallel Process-
ing for Scientific Computation, March 2001. Portsmouth, VA.

4204

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Helvetica
 /Helvetica-Bold
 /Times-Bold
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

