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ABSTRACT

This paper deals with a class of nonlinear systems described
by the equation M({q)q + Flq,d)q + G(q)g = £(t) where £{t) is the
control input. An adaptive controller is developed that takes
advantage of the structure and any known dynamics of the system
in order to increase speed of adaptation and relax the conditions
required for convergence.

The control design method has two stages. First, the known
dynamics are separated out and used to perform a global
linearization on the nonlinear system. Second, a model-
reference adaptive control, based on the Lyapunov stability
criterion, is designed for the remaining unknown portion of the
plant. This control scheme is shown to relax several assumptions
usually made in applying adaptive control to a manipulator
system. For instance, it relaxes the common assumption that the
time-varying plant is close to the desired model.

I. INTRODUCTION

The objective of this paper is to design a robust adaptive
controller for nonlinear systems described by
M(q)q + Flq,q)q + Clqlg = £ (1.1}
where M{q) is an nxn inertia matrix (symmetric, positive
definite), F(g,q) is an nxn matrix containing the centrifugal and
coriolis terms, G(g) is an nxl vector containing the gravity
terms, q(t} is an nxl joint variable vector, and f(t) is an nxl
input vector. Equation {1.1) describes robot manipulators in the
Lagrange-Euler formulation (6].

This nonlinear dynamic equation includes time-varying and
uncertain terms. To contzrol such systems, many model-reference
adaptive schemes have been introduced. The convergence of such
controllers usually depends (e.g.[3,4]) on assuming a slowly
time-varying plant that is "close" to the desired model.

In this paper, we attempt to relax such assumptions by
separating the plant dynamics into a known part and an unknown
part, and by applying a modified adaptive scheme.

II. PROBLEM FORMULATION

Let a system, described by equation (1.1), have some known
and some unknown plant dynamics so that we may write

Moz My t M= Ml + Mx™Mu) = MuMy,
G =0k t Gu,
F=FxtFy (2.1}

where subscript k stands for the known part and subscript u
stands for the unknown part. Assume M. and Mx are both
invertible. Note that we are able to deal with both additive and
miltiplicative uncertainties in M. By substituting {2.1) into
(1.1), one gets
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MkMul + Fuf + Guq = £ - Pl - Gag,
or

Mol + Mk~ Fud + M"2Cug = 1, (2.2)

where

u = M2 - Fxq - Cxq). (2.3)

The expression in (2.3) reduces to the global linearization
described in [5] when M, F, and G are perfectly known. In our
case, it is a one-to-ome input transformation in terms of the
known parameters so that, given u(t), the input £(t) of (1.1) may
be recovered by

£ = M + Fx + Cuq. (2.4)
Define x™ = [qT 47} to obtain
" col el
k=] X+ l lu (2.5
;_'Hu-xnk—xcu ‘Hu"“k_lFuJ M~ |

Note that when the plant is completely known so that M=My,
F=Fx, and G=0x, we have that Mu=I, Fu=0, and G,=0. Then, system
(2.5) reduces to the set of n decoupled double integrators whose
robust control was analyzed in [1].

At this point, the problem of determining £(t) in (1.1) has
been reduced to determining u(t) in (2.2), or equivalently in
(2.5). To accomplish this, we proposed the following adaptive
scheme.

Let a reference model be given by

%a = AmXa t Bav (2.6)
where
ool ol
An = i P {s Bm = i . i. (2.7}
L ] L

K: is an nxn diagonal matrix with terms equal to wi*, and Kz is
an nxn diagonal matrix with terms equal to 26iws [4]. The
natural frequency, w., and the damping coefficient, 8y, are
chosen to give desired transient and steady-state behavier.

In order to follow a desired trajectory ga(t), we may define
Xa® = | ga” Qa” 1. If the error between the desired and actual
trajectories is defined as

e = Xa - X, (2.9)
the error dynamics will be given by
& = Ane + (Am - A)x - Bu t Buv. (2.9)

Note that by using (2.6) and (2.7), the required reference input
v({t) for (2.6) can be obtained from the desired trajectory using



V = §a + KzQa + Kiga. (2.10)

The control objective is to make the error e(t) vanish

asymptotically. To this end, we propose the adaptive control law
U= Uk t Ua, (2.11)
vhere
me= -[Ka Kzlx t+v (2.12)

with v{t) given by (2.10),
control is

and the adaptive portion of the

LI VAVRRAVI b L VA 'S (2.13)

The gains /\: and /\. are adaptive gains to be chosen using a
Lyapunov approach.

III. ADAPTIVE CONTROLLER DESIGN

In this section, we shall see that if some of the dynamics

are known, and are removed from system (1.1) by the
transformation (2.3), the resulting model-reference adaptive
controller (MRAC) is simpler to find and implement. In

particular, the known parameters are not required to be slowly-
varying, and the frequency content of the control signal can be
reduced, since fewer parameters are being identified. This
approach is similar in scope to that described in [2], but
differs in the use of the linearizing transformation (2.3) and in
the structure of the adaptive controller. In particular, we do
not attempt to directly estimate the plant's parameters, since
our main goal is only to drive the trajectory error to zero. In
4] a similar adaptive controller was presented, but it was
designed under the assumption that the slowly time-varying plant
is "close" to the desired time-invariant model. Our control
scheme relaxes this assumption.

To find the adaptive portion of the control scheme, the
direct method of Lyapunov is used. This method permits one to
predict sufficient conditions for stability of the system which,
as a rule, are more rigid than necessary.

To obtain the error dynamics, the proposed control law
(2.11} is substituted inte (2.9), yielding

€ = Aue t+ BaX + Guv (3.1
where A is defined in equation (2.7) and
[
Ga = (3.2)
[ I - M 2(I4/\)
X
{ 0 0 g
Be = | 1(3.3)
| M 26tKat Aa)Ke Ma (2 Futkat/\a) K
If the system is completly known (i.e. Mu=I, Fu=0, Gu=0,
Aa=0, 220, /\,=0), then (3.1) becomes
& = Ao, (3.4)

Then this scheme reduces to the computed-torque design [1],[6).

Partition e(t) conformably with equation (3.1) as
et = [ e;™ el”]. The control problem is then to find an
adaptation law such that
lim (3.5)
t-de

e(t) = 0.
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Theorem 3.1

Define a filtered error as

w(t) = Pzes + Psez (3.6)
where
(Px P2" -{
p-| (3.7
l Pz Ps }
is the positive definite solution to the Lyapunov equation
AP + PAm = -0 (3.8)
with 0 > 0.

Then, the closed-loop error system (2.9) is asymptotically
stable using the control given by equations {2.11)-(2.13) if the
adaptive gains are adjusted as

A=

A =

-awd™ (3.9)
bwv?,
where a and b are positive scalars.

Proof:

Select the Lyapunov function candidate
L = e™e + tr(Ba*NFaBa) + tr{GaT™NFaGal, (3.10)

with P > 0, and

(3.11)

Fa and Fp are weighting matrices to be specified later.

Differentiating both sides of eq.(3.10} with respect to

time, we obtain
L= eT(A"P t PAx)e + 2trB.T(Pex” t FaNB.)
t 2tzGeT(Pev™ + FuNGq). (3.12)

For the first term of L to be negative definite , choose P

to satisfy (3.8). The second and the third terms will be
identically equal to zero if one chooses the adaptation laws
Be = -N-1F\Pex” (3.13)
Ga = -N"1FgevT, (3.14)
where the adaptation gain matrices are chosen as
3 i "
{ 00y i 0 0,
Fa = a| .y Fa=b! | (3.15)
L o I/ I
I L i
with a>0 and b>0 scalar qains.
By taking the derivative of equations (3.2) and (3.3) with

respect to time and assuming the unknown portion of the plant is
changing slowly (i.e. Mu=0, 6,20, Fu=0 ), we have



e o]
Ba - . . (3.16)
LONVAVES AT
r 1
. 0
Ge = . (3.17)
-H“-IAV
L
By wusing (3.16) and (3.17) in (3.13) and (3.14
respectively, the adaptation laws in equation (3.9) are obtained.
[

If the fast dynamics are known, they may removed from the
plant description using the transformation (2.3). Then the
unknown part will change slowly compared to the adaptation
mechanism. For example, M. can include the unknown constant

payload (i.e. Mu=0), while Mx contains the known arm inertia
terms, or F. can include the unknown dynamic friction
coefficients, while Fx contains the known coriolis and

centripetal terms.

Note that the states of {1.1) are the same as the states of

(2.5). Therefore, the trajectory error in (1.1} is the same as
in (2.5). Since the poles of the model are specified by Ki and
K2, our approach yields trajectory following with a desired

degree of stability.

IV. ROBUSTNESS ANALYSIS

Although Mx, Fx, and Gx in (2.4) are assumed known, they may
have uncertain or inaccurate entries, or it may be desirable to
use simplified values for these quantities in the control law.
In particular, their calculated, or assumed, values M., Fe and G
could be constants, or else updated only every few samples to
save computation time. Then, the calculated control law fe
actually used will be different from the one found when Mx, Fu
and Gx are completely known.

The effect of applying fc, instead of (2.4), to the physical

system can be analyzed. Let the calculated control be given by
fe = Mo + Fed + Geq. (4.1)

In {1}, it is shown, for the case of a completely known system
(i.e. Mu=I, Fu=0, G.=0), how to use information on the structured
uncertainties in M, F, and G to carry out a robustness analysis
associated with the global linearization (2.3). The approach
uses a Lyapunov equation approach in the time domain [7] and the
total stability theorem [10) to provide practically meaningful
bounds on lHe'Hk ¢ 1FeFx| and iG='G*i for guaranteed
closed-loop stability. We plan to extend these results to the
case of some unknown dynamics.

On the other hand, one could also carry out a robustness
analysis associated with the adaptive portion (2.13) of the
proposed control scheme. That is, if Mu, Fu, and Ga are not
exactly zero, the proposed scheme will still work if they are
*spall enough". Indeed, we should be able to find bounds on the
error in (3.1) in terms of the norms of M, and the
desired acceleration a(t).

Fo, Gy,

A future publication will provide a complete analysis of
these two effects.

V. CONCLU3ION

This paper propeses a control scheme which takes advantage
of the structure and any known dynamics of a nonlinear system to
increase speed of adaptation and relax the conditions required
for convergence. The known dynamics are separated out and used
to perform a global linearization on the nonlinear system. Then,
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the adaptive portion of the control scheme uses a modified
Lyapunov function to derive adaptation laws which are not
dependent on the usual assumption that the time-varying plant is
"close" to the desired time-invariant model.
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