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Abstract 
A model following controller is proposed for discrete nonlinear 
systems using a recursive multi-layer perceptron (MLP). The  
MLP network contains dynamics and is able to minimize the 
error between the plant and a desired model in many cases. 

I. Introduction 
In general, the control of nonlinear systems requires a com- 

pensator which performs some nonlinear mapping [I]. In prac- 
tice, however, an analytical form of the compensator is difficult 
t o  find and implement. On the other hand, neural networks are 
being billed as massive computational networks which can imple- 
ment nonlinear mappings from one linear vector space to another 
131. The  proposed scheme attempts t o  minimize the error between 
the desired model and plant outputs  by using an MLP neural 
network as a feedback compensator (see Fig. 1). If the plant is 
known, the weights of the MLP can be updated using a standard 
gradient search technique (back-propagation through the plant), 
an approach which has been recently suggested in many recent 
control applications [4-6). By using the classic MLP algorithm [7] 
however, these controllers were limited to  the case of static feed- 
back laws. For output  feedback, such a restriction will undeni- 
ably prevent us from dealing with many interesting problems. 
Recently, recurrent networks which contain dynamics have also 
been suggested [SI but have not caught on in the control com- 
munity. In [5] and 161, a state  was reconstructed by delaying the 
outputs  and the inputs t o  the system so that  the MLP could be 
used to implement a static mapping from a s ta te  space to  an 
input space. T h e  present work uses a similar idea but differs 
from IS] because i t  includes the controller directly in the feedback 
structure and has a different implementation of the dynamic 
backpropagation algorithm than the one in [5]. 

In section 11, we describe the nonlinear control problem and 
present the neural network algorithm. An example is given in 
section 111 and our conclusions are given in section IV. 

II. Recursive Multi-Layer Perceptrons 
Our efforts in this research have concentrated on including 

the controller as an integral par t  of the update algorithm for a 
model-following control problem, rather than identifying the sys- 
tem or its inverse (compare t o  direct adaptive control). This  was 
motivated by the fact that  the estimated nonlinear system or its 
inverse, unlike their linear counterparts, are mathematical models 
only. They d o  not  give useful information when the actual sys- 
tem is subjected t o  different inputs, except when the training 
input is white noise (51. The  model-following problem was 
selected for its generality. For example, by replacing the model 
with a unity gain one recovers the inverse identification problem 
[2,5]. Many control objectives may be achieved by selecting an 
appropriate model and trying t o  minimize the error between the 
plant/controller output  and that  of the model. The  block 
diagram of Fig. 1 represents the general structure of the problem 
discussed and the controller is described next. 

The  controller in Fig. 1 consists of two subnetworks, a 
recursive net and a nonrecursive one. The  outputs  of these two 
networks are summed to produce the controller output, 

u(k) = U&) + V R ( k )  (1) 

Each of these networks is a multi-layer perceptron. If we k t  
v i ( k )  represent the output  vector of the ith layer then signals are 
propagated through the networks according t o  

Vi(,) = f( WiVi-,(k) + WiO) (2) 
Wi represents the weight matrix connecting the outputs of layer 
i-I to the nodes in layer i ,  and wio are the bias weights for 
layer i. f(.) is a vector function which applies the standard sig- 
moid function, / ( 7 )  = (l+e-7)-' - 0.5, t o  each component. 

T h e  input vector to the nonrecursive net consists of current 
and delayed values of the input signal, that  is for the nonrecur- 
sive net vo(k) = d(k), where 

d(k)T = [d(k). d(k-l), ..., d ( k - o n ) ]  (3) 

T h e  input t o  the recursive net consists of previous net outputs, 
that  is for the recursive net vo(k) = u(k-1) where 

u(k-1)T = [+I), u(k-2), ..., u(k-or)] (4) 

0, and or are the orders of the nonrecursive and recursive net 
respectively. Note that  both nets have only one output  node so 
that  W, is a row vector and wL0 is a scalar. In addition the out- 
pu t  node is linear for both nets, that  is f(7) = 7 for the output  
node. 

Our goal here is t o  find the set of network weights that  
minimizes the total error, 

N N 

r(k)-Y(k))2 ( 5 )  E = 2 k  2 h_oe ( 1 = C( 
h -0 

where r (k)  is the output  of the model and y(k) is the output  of 
the plant. The  plant is in general nonlinear and its output  is a 
function of previous outputs as well as the current and previous 
inputs, 

~ ( k )  = g(  ~(k),...) u(k-pn)j ~(k-1)v...p y(k-pr)) (6) 
where pn and pr are the nonrecursive and recursive orders of the 
plant respectively. The  weights are found using a gradient 
search. As such the update equation for weight j is 

aE wj(m+l) = w j ( m )  -p- a wj 

(7) 

where 

and 

T h e  q vectors above represent partials of the plant with respect 
t o  its inputs and outputs. When the plant is unknown q must be 
estimated. T h e  aj(k) term in Eq. 11 is given by 
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I t  can be shown tha t  (91 

uj(k) = BPj(k)  + FF(al~7-1(k--1)) (14) 

where BPj (k )  are the standard backpropagation equations and 
FF(ag'-'(k-l)) represents a recursive term due to the feedback. 
T h e  standard backpropagation term for the nth weight in the 
mth node of layer I can be expressed 

BP(k) = v~-l,,(k)hlm(k)~IT,1,,H,+1(k) . . . W L A - d k )  W,T1 

(15) 
where 1 is a vector of Is, and 

q ( k )  = diW[IS,,(k), "i2(k)i . . ' t hin(k)] (16) 

where 

him(k) vim(k)[1-~im(k)] (17) 

T h e  recursive term in Eq. (14) can be shown to take on the form 
191 

FF(ag'-l(k-l)) = W I H ~ - ~ ( ~ )  W L - ~  . . . FI, (~)  W+,?-~(R-I) 

(18) 

In this operation the a,:'-l(k-l) vector is fed /orward through 
the recursive net in a fashion which is almost the reverse of the 
BP( k) operation. 

In general, the stability of the gradient approach in a feed- 
back loop is not guaranteed even in the linear case. As might be 
suspected, certain initial conditions and design parameters will 
lead to  unstable behavior of the closed-loop system. This  will be 
an area of further research. On the other hand, we were able to 
solve many model-following problems, with different external 
inputs and many different models. A particular model-following 
example is given next. 

III. Example 
Let the plant be given by IS] 

y(k)  = y(k--l) + u3(k). 
l+y2(k-l) 

and the reference input be 

d ( k )  = sin(0.05nk) 

Let the reference model he the unity gain so that  an inverse 
model is sought. The  algorithm was run for 50,000 iterations 
with white noise training input, after which, the weights were 
fixed and the results of Figure 2 were obtained. As can be seen, 
the recursive neural network has learned the inverse of the plant 
for the particular input d(k). 

W .  Conclusions 
A recursive neural network was derived and used for t,he 

model-following control of a discretetime nonlinear systems. 
The  network is updated in the feedback loop directly and was 
able to minimize the model-following error for a number of 
plants. More recently, we have included another MLP in the 
feedback path of the plant's output,  and generalized the 
algorithm to higher order MLP's. The  results will be reportecl 
elsewhere. Many issues however, remain to be resolved. Such 
issues include the stability of the closed-loop system, the choice 
of the number of delays and other design parameters. I t  is felt 
t ha t  the recursive MLP approach presents an alternative t o  the 
hard problem of controlling a nonlinear system. 
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