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1 INTRODUCTION 
There has recently been an increasing interest in finding extreme- 
point results for the study of stability of uncertain polynomials. 
The main purpose of such results is to find a special family of un- 
certain polynomials, whose stability is equivalent to the stability 
of a finite number of polynomials. This work finds applications 
in the robust stabilization of interval plants [l], The general D- 
stability of some special regions in the complex plane can also 
benefit of this technique. 

Recently, the authors have extended the class of regions in 
the coefficients space where Schur stability of the extremes im- 
plies the stability of the entire family 12). Our results allowed a 
wider class of coupling between the coefficients of the uncertain 
polynomials. Other extreme-point results are available 131, but 
require the uncertainty to have a special form, which is difficult 
to view in the coefficient space. It is well known that a four- 
corners or even an all-extremes result does not exist for discrete- 
time polynomials whose coefficients are varying independently. 
However, Hollot and Bartlett have shown that a variation in 
the upper-half of the parameters can be allowed with an all- 
extremes test being valid. [4]. In the present paper we extend 
the results in [2] and [4] when the degree of the polynomials 
under consideration is odd. 

2 PRELIMINARY RESULTS 
We will write the polynomials in the complex variable s with 
real coefficients in the form 

P ( s )  = bas" + bls"-' + . . . + bn (1) 

Throughout this paper, stability for a continuous-time polyno- 
mial means stability in the Hurwitz sense. The polynomials in 
the complex variable z with real coefficients will be written in 
the form 

For these polynomials we will use stability and Schur stabil- 
ity interchangeably. We will first transform a robust stability 
problem formn the discrete-time domain into a continuous-time 
robust stability problem using the bilinear transformation. To 
denote the largest integer less than x and the smallest integer 
greater than x, we will use 1x1 and 1x1, respectively. Let 

(3) 

Then, the polynomial given in (2) will be stable if and only if 
the transformed polynomial P(s )  given by 

P ( s )  = ao(s + 1)" + al (s  + 1)"-'(s - 1) + ...+ a,(s - 1)" (4) 

is stable. Any continuous-time polynomial P ( s )  as in (1) can be 
decomposed into 

P ( s )  = Pe(s) 4 sPo(s)  ( 5 )  

where Pe(s) and sPo(s) contain, respectively, the even-degree 
and odd-degree terms of the polynomial P ( s ) .  

Definition 1 The polynomial P ( s )  follows an Interlacing De- 
composition, if the roots of P,(s) and P,(s) all lie on the imagi- 
nary axisl are different and interlace, and the root closest to the 
origin is one of P.(s). 

The well-known Interlacing Property is easily stated with the 
previous concept 

Lemma 1 Let 

P ( s )  = bas" + blS"-l + . . * + b, (6) 

Then, the polynomial P(s) is stable if and only if b,/bo > 0 and 
P( s )  follows an interlacing decomposition. 

We define the difference polynomial p d ( w )  in the real variable w 
as P d ( W )  = P,(jw) - Po(jw) . Let w~ denote the real positive 
roots of P d ( W )  and form the series 

0 5 W& 5 Wd2 5 '.' 5 Wdl (7) 

where 1 is the number of roots. 

Corollary 1 Suppose the polynomial P ( s )  of degree n follows 
an interlacing decomposition] then the real positive roots WA of 
the polynomial p d ( w )  are such that the series of P a ( j w d i )  takes 
alternating sign values when i goes from 1 to 1 .  firthermore, 
either 1 = [(n - 1)/21 or I = [(n - 3)/2]. 
Proof: see [5] 

Lemma, which waa first presented in 16). 

Lemma 2 Let 

With the previous results at hand, we can state the following 

P(s ,  A) = Q(s)  + X(OS + b)P*(S'), X E [0,1] (8) 

be a family of polynomials of constant degree n,  then the stability 
of t h e  family i s  equivalent to that of the eztnme polynomials, 
P(s,O) and P(s ,  1). 

Proof: See for example [6]. 

3 MAINRESULTS 
We will first show how the results in [4] can be extended for 
polynomials P ( z )  of odd degree. Let m = (n+l)/2 and consider 
the family of polynomials 
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where n is odd. Transforming every polynomial of the family 
into a continuous-time one by means of the bilinear transforma- 
tion (4), 

n 

P(s,a,) = 4 4 s  + l)n-'(S - 1)' + a,(s + l)"-"(s - 1)" 

= P * ( s )  + 4 4 s  + 1)"-,(s - 1)" (10) 

i = O  
i#m 

With the change of variable X = (a, - 4 ; ) / ( 4 ,  -a;), the family 
can be expressed as 

P ( s ,  A )  = Po(s) + X(ai - a,)(. + l)"-"(S - l)", (11) 

where X E [0,1] and Po(s) = P * ( s )  + a;(s + l)"-"'(s - 1)"'. 
Clearly, the polynomial for X = 0 corresponds to a, = a;, and 
the polynomial for X = 1 to a, = 42. To use Lemma 2, we only 
need to show that the term (s  + l)"-"(s - 1)" can be written 
as ( a s  t b)P*(s2) which is obvious since 

(3 + - 1)- = (s  + 1 ) ( 2  - 1)- (12) 

The family P(z,a,) has no degree dropping, then the family 
P ( s , A )  will not have degree dropping, and Lemma 2 can be 
combined with Theorem 2 in [4] to state the following theorem. 

Theorem 1 T h e  fami ly  of uncertain polynomials F defined as 

i s  stable i f  and only if all the polynomials in 3 f o r  which a, is 
either a i  o r  af, with j = I?], . ' .  , n, are stable. 

Note that the result in (41 only allows independent variations in 
coefficients aj, j = LT], . . , n .  In fact, for monic polynomials 
of degree 3, Theorem 1 proves that it is necessary and sufficient 
to check the eight extremes, as was shown in [7]. In order to 
allow coupling between the uncertain coefficients, we consider 
the family of polynomials 

P(2, a;, an-1-,) = 402" t U I Z " - ~  + . ' ' + U,, 

ai E [a:,.'], an-1-i E [ai-1-;>aL-i-;] (14) 

where n is odd, i < (n  + 1)/2 and where 

a; -ay  = an-l-a - a;-l-, (15) 
If we transform the family into continuous-time using the bilin- 
ear transformation, we can write 

P(3, a;, 4,,-1-;) = Po(.?) + ,\(Ut - U,:). 

{(s + l)"-'(s - 1)' i- (9 i- l)'f'(s - 1)n-i-l} 

(16) 
where X = ( a ; - a ~ ) / ( a ' - a ~ ) .  Taking ( s + l )  as common factor 
in the second term, we can write 

P(~,a, ,a , , -~-;)  = Po(,)  + X(at  - a,-)(s i- 1). 
((9 + l)n-I-i(s - 1)' -t (9 + l)'(s - 1),-,-1} 

(17) 
This latter factor can be shown [8] to be an even polynomial in s. 
Therefore, the conditions for Lemma 2 hold, so that the stability 
of the extremes is necessary and sufficient for the stability of 
the family of polynomials described by (14), and (15). This 
result can be combined with Theorem 4.3 in [2] to formulate the 
following general test. 

Theorem 2 Consider 4 polytope of polynomials in the coefi-  
cients space where each pair ( a ; , ~ ) ,  0 5 i 5 n, 2Lnj2J - i 5 
k 5 n is varying inside 4 polygon with edges sloped in the in- 
terval [x/4,3r/4] and where the pairwise variations (a,, ak )  and 
(a;, ai), k # 1 are not  allowed simultaneously. Then ,  every poly- 
nomial  in the polytope will be stable i f  and only if all the poly- 
nomials obtained at all the polygon corners are stable. 

4 CONCLUSIONS 
We have provided an extension to some robust stability results 
for discrete-time polynomials expressed directly in the coefficient 
domain by making use of extreme-point results for continuous- 
time polynomials. Specifically, we can allow independent varia- 
tions, not only in the upper-half of the coefficients but also on 
the coefficient prior to the center one in the case where n is odd. 
The case of dependent coefficients was also extended from our 
previous results. 
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