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Abstract 

Input-state feedback linearization is discussed in this paper 

linearizes for a range of operating points and is more 
appropriate than the conventional methods since the 
operating point can change frequently in power systems. A 

wherex = [ 6 0 U_ = [P, EfdIT, and 

C =  

2 as a method for power system control. This method V- (xi + Xq).V, 

design. Tdo (xi + xe) (xi + Xe) 

0 0  A=- B=- 
2.H (xi + Xe) 2.(x;1 + x,)(xq + Xe) 

( x d  x i )  .v, F=- 1 (xd - xi) 
D = y  E=- single generator, infiiite bus model is used to illustrate the 

1. INTRODUCTION 

The control theory of linear systems is a very well 
defined area and has been used in many years with good 
results. In the real world nearly all systems are nonlinear, 
and are therefore usually linearized before being controlled. 

A feedback-linearization approach can be used to cancel 
out the nonlinearities of a nonlinear system by feeding 
them back into the system, and gives a linear closed-loop 
system, which can be controlled with linear control theory. 

To the best of our knowledge, in power systems only 
few papers have been published on this method [l-41. and 
they have only dealt with the single-input case. In this 
paper the objective is to consider the multi-input case, and 
to fiid out if input-state feedback linearization can be used 
on a single generator, infinite bus model where the inputs 
are the mechanical torque, and the generator field voltage. 

2. FEEDBACK LINEARIZATION OF POWER 
GENERATOR CONNECTED TO AN INFINITE BUS 

When studying power system stabilizers the system is 
often simplified to a single-generator. infinite bus model as 
shown in Fig. 2.1. 

Figure 2.1: Single-generator, infinite bus model 

There exist different state-space models of the single- 
generator, infiiite bus model. Their dimensions can vary, 
depending on how accurate a model is required, and what 
states are of interest [ 5 ] .  The model that will be used here 
has dimension n=3, and the state vector has the following 
components: 6, the synchronous generator phase angle, U, 

the rotor angular velocity, and e;, the voltage behind the 
transient reactance of the generator. The system is 
described by the following nonlinear state equations [6]: 

x1 = og.(x2 - 1) 
x2 = -A.B.x3-sin(xl) - A-C.cos(xl) - A.u! (2.1) 
1 3  = -(D + D-E)-x~ + D-Fcos(x~) + D-U? 

(For the definition of the parameters see Appendix A) 
After finding out if the system is feedback linearizable, a 

state transformation can be found [7]. This gives a linear 
svstem that has the followine state vector: 

- T  
xl-xlo w ~ . ( x ~ - l )  x 3 - ~ 3 ~ ]  = [AS we.Aw Ae;lT 

and input transformation: 

UI = v1 + B.x3.sin(xl) + C.sin(2xl) 
%.A 

The resulting linear system is then: 

4. CONTROL DESIGN AND SIMULATIONS 

In this section the responses of the nonlinear, and the 
linearized systems to a disturbance are simulated. The 
disturbance is generated by a drop in the infiiite bus voltage 
V, from 1.0 p.u. to 0.0 p.u. at time 1.0 s. The values of the 
system’s parameters used in these simulations are given in 
the Appendix and are from a generator in the Icelandic power 
system. 

In order to evaluate the performance of feedback 
linearizing controllers, we choose a linear state-feedback 
controller, where the feedback matrix is: 

3 0 1 7 0  
. =Lo  0 1 1  

Figure 3.1 shows the response of the system in (2.1) 
with the state feedback. In figure 3.2 the system is feedback 
linearized, and the oscillations are suppressed, the 
disturbance is smaller and the settling time is much faster, 
than that of figure 3.1. 
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Figure 3.1: Response of nonlinear system to disturbance at 
I sec. 
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Figure 3.2: Response of linearized system to disturbance at 
1 sec. 

4. Backstepping 

The system in (2.1) is not complete; because u1 and uz 
are not accessible inputs. To obtain a more realistic model 
the linear dynamics of govemor. turbine, voltage regulator, 
and exciter were added. These systems have the following 
state space equations: 

Governor and turbine: 
51-3 = A1’51-3 +bl’rl (4.1) 

54-5 = A2.k.5 -I- h’r2 
U2 = [O 11’_54-S 

U1 = [o 0 11-51-3 

Voltage regulator and exciter: 
(4.2) 

The govemor and turbine system is non-minimum 
phase, but the voltage regulator and exciter system is 
minimum phase. The two inputs from (2.2) are known, but 
we need to find the physical accessible inputs rl and ‘2. To 
do that, we tried to use backstepping [8]. Because the 
system in (4.1) is non-minimum phase there is no simple 
solution, but the system in (4.2) has a simple backstepping 
solution. On the other hand, the solution for r2 does not 
give the correct response. 

5 .  CONCLUSIONS 

The use of input-state feedback linearization on a single 
generator, infinite bus model has been presented in this 
paper. The model used was linearizable, and as simulations 
show, the linearized system permits the use of linear control 
with good results. It also permits the continued use of 
robust linear controller or any other controller from linear 

control theory. 
backstepping with limited success. 

We have also investigated the use of 

APPENDIX 

o : rotor angular velocity 
: phase angle 
: transient induced voltage 
: infinite-bus angular velocity 
: infinite-bus voltage 
: mechanical power 
: field voltage 
: inertia constant 
: field time constant 
: d-axis synchronous reactance 
: d-axis transient reactance 
: q-axis synchronous reactance 
: external reactance 

xd = 0.93 P.U. 0, = 1.0 p.u. 
v, = 1.0 p.u. x i  = 0.23 p.u. 
x l o  = 0.0044 rad x4 = 0.55 P.U. 

x jO = 7.8274 P.U. x, = 0.058 P.U. 
H = 3.51 s Ti, = 5.3 s 
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