Proceedings of the 32nd Conference
on Declsion and Control
San Antonto, Texas « Decembaer 1993

TP11 - 3:30

ALGEBRAIC TESTS FOR
OUTPUT STABILIZABILITY

F. Pérez *, C. Abdallah !, P. Dorato !, and D. Docampo *
* ETSI Telecomunicacion, Universidad de Vigo, 36200-VIGO, SPAIN
t EECE Dept., University of New Mexico, Albuquerque, NM 87131, USA.

Abstract

In this paper, we provide algebraic tests to determine whether a
linear Single-Input-Single-Output (SISO) system, is stabilizable
with a constant output feedback.

1 Introduction

The problem of output stabilizability of linear systems remains
one of the most challenging problems in systems theory. While
it is true that many techniques exist to stabilize systems using
only output measurements, the fundamental question of the ex-
istence of such controllers is still open. In other words, given
8 linear, time-invariant system (LTI), the existence of a con-
stant output feedback that will stabilise the system can not in
general be answered, short of using a root-locus or Nyquist ap-
proach that will actually answer the existence question by find-
ing such a stabilising controller. One might argue that with
the advent of graphing software, the question is moot since one
can answer the question graphically for almost any LTI, SISO
system. It is however important to obtain an algebraic answer
to the stabilizability question for many reasons. First, a con-
stant output feedback is the simplest member of the hierarchy
of fixed-structure controllers, and an answer to the constant out-
put feedback stabilizability might provide an answer to the more
general fixed-structure controllers, where a graphical approach is
not available. Second, the algebraic conditions may provide the

designer with a negative answer to the stabilizability question
without actually solving the problem. Finally, these conditions
will provide an alternate view to the root-locus and Nyquist
methods of analysis which may be extended to the robust sta-
bilisability problem. We call the attention of the reader to the
paper [1] for a related approach.

This paper is organized as follows: The problem is stated in
section 2, our main results are given in section 3, while our con-
clusions are given in section 4.

2 Problem Statement

We consider the problem of stabilizing the SISO continuous-
time, linear, time-invariant system described by the transfer
function

Gle) = a(s) S+ tonastan @
connected in the standard feedback configuration, with the out-
put feedback compensator u = —ky + r, 8o that the closed-loop
system is deacribed by
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where p(s, k) = a(s) + k¥s). Let us decompose p(s, k), a(s) and
b(s) into their even and odd parts

p(a,k) = pus®,K) + spa(2®, k)
o(s) = ad(s”)+ sa0(s")
Bs) = bu(s?)+ sbo(s”) ©))

The approach we consider is to determine first the jw axis cross-
ings w; of the roots of p(s, k), solve for the corresponding gains
k; and then determine whether a particular crossing is from the
Left-Half-Plane (LHP) to the Right-Half-Plane (RHP) or vice-
versa. By keeping track of the number and the direction of
crossings, we will be able to answer the stabilizability question
for a given G(s).

3 Main Results

Let us then consider the closed-loop characteristic equation 0 =
(s, k), which becomes along the jw axis

a(jw) + kb(jw)

ay(~w’) + jway(—w?) + kb(—w*) + jwhe(—v?))
[aa(—w?) + kby(—w?)] + jwlae(~w?) + kbs(—w?)]
(ar(—w0®) + kbr(—w)] + jlar(~w’) + kbs(-v?)]

where za(jw) = z,(jw) sad z/(jw) = wz,(jw). Therefore,
setting both real and imaginary parts to sero, we can eliminate
k and obtain

Y(-v?®) = ap(—w?)bs(~v?) - a;(—w’.)bn(—w’) =0

0 4)

O]

The positive real roots of this equation w;, ¢ = 1,---,m rep-
resent the positive jw axis crossings. We can then find the
corresponding gains as in [2]

ki _a(jwi)/b(jwi); i = 1,---,m
—'“l(—w:?),b'("w-?); 1=1,---,m
—ap(—w})/ba(-w}); i=1,---,m

(6)

and order them as ky < k3 < -+ < k. Let us assume that a(s)
has at least one root in RHP. Otherwise, a small enough value of
k which stabilizes p(s, k) always exists. The closed-loop system
will be stabilized if, at some k, all n roots are in the LHP. We
then have the following results.

Lemma 1 The ouiput stabilizhility problem is solvable if and
only if at least one of the m polynomials p(s, k,) is stable, where
k, is any value which satisfies ki < k, < k; i=1,.--,m.

Proof: Obvious. =

Lemma 2 Suppose that p(s) has o single root at s = jw; — ¢,
for a small real € > 0. Then the angle of p(jw) is a strictly
increasing function of w ot w;, i.e., & arg{p(jw)} lw=u> 0.

Proof: The proof can be obtained by writting p(jw) = (jw +
€ — jw;)R(jw), R(jw; ~ €) # 0 and deriving its argument. ®



We will next present a lemma and its proof for the special case
where only one branch of the root locus crosses the jw axis at a
particular k;. The more general case where g roots cross the jw
axis admits an indentical test and its proof may be found in [3].

Lemma 3 A complex conjugate pair crosses the jw azis
1. From the LHP to the RHP at Ljw; if and only if

[/}

2oV ()] o> 0

2. From the RHP to the LHP at tjw; if and only if

a

E[Y(_"")l fw=w< 0

Finally, the roots stay in one half-plane if
8
oY ()] o= 0;

Proof: We will only prove case 1) for the case where one branch
of the root locus crosses the jw axis at k = k;. At k= ki —¢,
for a small € > 0, we have a pair of complex conjugate roots in
the LHP, but close to the jw axis. Then, by Lemma 2,

sorg{a(iu) + (k = )} hemw> 0

In the following, we drop the explicit dependence on w and w;,
to obtain

-arg{a(iu) + (k = ()} lomer> 0
8 ay + kiby — ebg
EArctan{————————an v Ebn} >0
(o} + (ks — e)¥7(ar + (& — €)ba]
> [ak + (k — €)bpllar + (k: — €)bi]
(o} + (k: — €)by)[—ebr] — [ag + (ki — €)bR][~ebr) > 0
—(a} + kib})br + (ak + kibl)br — e(bybr — bzbr) > 0
then, since ¢ is arbitrarly small, and using (6),
(ak + kibR)br — (af + kibi)br > 0
<= agbr —arby — ajdr + ard; >0

= o loliwlbi(iu) - arlju)ba(ju)] loem> 0
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Lemma 4 A complez conjugate pair crosses the jw azis from
the LHP to the RHP at +jw; if and only if

ki arg{Hju)/a(j0)} lomec< 0
Proof: Consider

i lorg(Hj)/ o) lomm< 0

In the following, we drop the explicit dependence on w and w;,
to obtain

i (675 (b(j0)/ ()] o< 0

k,% [arg{ba'}]: 0
0 —bror + biar
k'aw( brar + arbr ) <0
ki(—bras + brar)'(brar + arbr)

< ki(bzar + arbr)'(—bgrar + brar)

!
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but using (6),

—bgar + bag = %(bgb; —bab) =0
brar +apbr = El;(_“; —ak) (M
therefore, (7) is satisfied if an only
(brar — brar) <0 (8)

which is condition 1) in Lemma 3. Therefore, the lemma is
proven. n

4 Conclusions

In this paper we have provided algebraic conditions for the sta-
bilizability of SISO systems with constant gains. The conditions
are simple, testable, and may be extended to the robust stabi-
lizability problem as will be reported on in a future paper.
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