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Abstract 

Vehicle lateral dynamics are affected by vehicle mass, 
longitudinal velocity, vehicle inertia, and the corner- 
in stiffness of the tires. All of these parameters are 
su%ject to variation, even over the course of a sin- 
gle trip. Therefore, a practical lateral control system 
must guarantee stability, and hopefully ride comfort, 
over a wide range of parameter changes. T+ pa- 
per describes a robust controller which theoretically 
guarantees stability over a wide range of parameter 
changes. The performance of the robust controller is 
then evaluated in simulation as well as on a test v e  
hicle. Test results for experiments conducted on an 
instrumented track are presented, comparing the ro- 
bust controller to a PJD controller which was tuned 
on the vehicle. 

1 Introduction 
One of the fundamental goals of the Intelligent 

Vehicle-Highway Systems (IVHS) community is to 
develop automated highways where vehicles are ca- 
pable of automatically driving down the road, either 
individually or in platoons of multiple vehicles. In 
order to implement such a system, a controller that 
can keep the vehicle centered in the lane is required. 
There are many factors which make automatic lat- 
eral control of vehicles difficult. These include chan - 
ing vehicle parameters (tire pressure, tire wear, et.$, 
changing road conditions (rain, ice, bumps, crowns, 
etc.), as well as disturbances caused by wind and 
other factors. Another important consideration is 
driver comfort while performing lane changes and re- 
acting to disturbances. 

Initial research efforts on automated highway sys- 
tems AHS) were conducted by the Radio Corpora- 

in the late 1950’s [l, 2r A significant amount of re- 
search, including the development of prototype exper- 
imental equipment, was conducted at  Ohio State Uni- 
versity between 19641980 [3 This included research 
on both lateral and longitukinal control of highway 
vehicles. The largest current advanced vehicle control 
system (AVCS) research effort is being conducted at 
California PATH (Partners for Advanced Transit and 
Highways) 4, 5, 6, 7, 8, 9, 10, 11,.12, 13, 141. 

The PA !r H program has been investigating a fre- 
quency shaped linear quadratic (FSLQ) optimal con- 
trol approach for the lateral controller, with feedfor- 
ward preview control to reduce feedback gains [4, 
6, 71. Although the FSLQ approach incorporates 
ride qualities into the performance index, other work 
which attempts to design a lateral controller taking 
into account ride comfort is described in [15]. Fk- 
cent work on robust control applied to car steering is 
described in [16, 17, 18, 19, 20, 211. While many of 

tion o \ America in coo eration with General Motors 
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the previously mentioned efforts rely on buried mag- 
nets, electrified wires, or a microwave radar to deter- 
mine the vehicle’s lateral p-yition, another promising 
approach involves usin Efforts at Carnegie 
Mellon University (CM%Jyy?ihe National Institute 
of Standards and Technology (NIST), and in Ger- 
many have yielded promising experimental results us- 
ing neural networks and classical vision algorithms 

This paper describes a robust lateral controller 
which theoretically guarantees stability over a wide 
range of parameter changes. The controller is de- 
signed with the plant uncertainty modeled as un- 
structured additive perturbations in the fre uency- 
domain. This approach, first described in [24,  is re- 
viewed in Section 2. Extensions to the current the- 
ory which are applied to the car problem are also 
described in Section 2. The modeling of the vehicle’s 
lateral dynamics is discussed in Section 3. The con- 
troller design and simulation results are presented in 
Sections 4, and test results are presented in Section 5. 
A summary and discussion of planned future research 
is outlined in Section 6. 

[22, 231. 

2 The Robust Stability 
Condition 

Modeling system uncertainty as unstructured ad- 
ditive perturbations in the frequency-domain is de- 
scribed by equation (l), where the nominal plant trans- 
fer function is po(s ) ,  and the uncertainty in the trans- 
fer function is Sp(s).  

The robust stability problem for additive unstruc- 
tured perturbations then reduces to the problem of 
finding a strictly bounded real SBR function u(s) 

inal plant in the RHP. This interpolation problem is 
often referred to as the Nevanlinna-Pick interpola- 
tion problem. There are limitations to the approach 
presented by Kimura, which arise from Iimitations of 
the Nevanlinna-Pick interpolation theory. The cur- 
rent theory has difficulties with interpolation points 
with multiplicity, as well as with interpolation points 
on the j w  axis. Techni ues for handling these two 
cases are outlined in [257. These techniques are ap- 
plicable to  the lateral control of automobiles because 
the lateral dynamics model contains a double integra- 
tor as described in the next section. 

which interpolates at the unstab \ I  e PO es of the nom- 

3 Model of Lateral Dynamics 
The two degree-of-freedom linearized bicycle model 

for a vehicle’s lateral dynamics will be used in this sec- 
tion to model the test vehicle, a GMC Jimmy. The 
estimated nominal parameters for the Jimmy and the 
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Table 1: Estimated Parameters for S-15 Blazer 

Figure 1: Simulation of Plant Uncertainty 

hxpected range of values are listed in Table 1. The 
iominal speed of 8 mls corresponds to 28.8 kmph,  
vhile the extreme speeds correspond to 18 kmph and 
16 kmph respectively. These values were chosen be- 
ause the initial field testing will be conducted at rel- 
ttively low speeds. Simulation results for highway 
peeds appear in [26]. 

Usin the values in Table 1, the nominal car model 
s. given%y equation (2). 

(2) 
Ef(s) - 114.2552(s2 + 13.4391s + 31.4366) 
6f ($1 
-- 

s2(s2 + 24.3156s + 151.9179) 

where Ef is the lateral error ( m )  at the sensor, and 
Sf is the front steering angle (rad) 

L MATLAB@ program was written to determine the 
lound on the frequency-domain uncertainty of the 
lominal plant as the velocit and cornering stiffness 
ary over the ranges in Tabg 1. The program finds 
he magnitude of 

(3) 

rhere po(s )  is the transfer function of the nominal 
lant and p ( s )  is the transfer function of the actual 
lant as the parameters are varied. The results of 
he computer simulation are shown in Figure 1. The 
ssults are plotted as the ratio ImI. This format 
f data presentation was chosen because it facilitates 
ne choice of r(s) as a function of po(s ) .  This simpli- 
es the calculations required to arrive at the robust 
mtroller in the next section. 

4 Controller Design 
Usin the data in Figure 1, a conservative bound 

on the pfant uncertainty can be expressed as 

~(s) = O.Gpo(s) (4) 
With this bound, a robustly stabilizing controller can 
be designed if there exists an SBR solution to the 
interpolation problem. It should be noted that this 
choice of uncertainty is equivalent to the uncertain 
gain problem, whose solution is described in [27, 281. 
However, a less conservative gain could be chosen 
which would require the use of the techniques de- 
scribed in [25]. 

A robustly stabilizing compensator for the lateral 
control problem was obtained in [25] and is shown in 
equation (5). 

( 5) 
(2s2+1.5s+0.25)(sa+24.3156s+151.9179) 

114.2552(0.64s2+2.64s+1.16)(s2+13.4391s+31.4366) 
c(s)= 

The poles of the nominal-closed loop system are -2.5, 
-0.625, and -0.5. Test results for the robust lateral 
control algorithm are presented in the next section. 

5 Test Results 
The theoretical lateral control algorithm presented 

in the previous section was im lemented on a test ve- 
hicle. For the purposes of &is research, the 1989 
GMC Jimmy was modified for drive-by-wire opera- 
tion, where there are no mechanical linkages between 
the driver’s steering commands and the motion of the 
wheels. A hydraulic control system is used to move 
the wheels under computer control. A one mile test 
track was instrumented with a wire reference system 
to sense the lateral position of the vehicle. The lat- 
eral control algorithm presented in the previous sec- 
tion was discretized using the bilinear transformation 
shown in equation (6). 

2 2 - 1  
T z + l ’  

s=-- T = 1 0 0 m s  

The gain of the theoretical controller was increased 
by a factor of 2 to overcome approximately 1 degree 
of backlash in the steering actuator. A small inte- 
gration term was also added to the robust controller 
to overcome center steering offsets and road superel- 
evation. Testing was conducted on a straight section 
of the track, at speeds of 20 kmph,  30 kmph,  and 
40 kmph.  The test results are shown in Figures 2 - 4. 

A proportional-integral-derivative (PID) control 
algorithm was also implemented for comparison to 
the robust controller. The ains of the PID controller 
were hand tuned on the veaicle. The performance of 
the PID algorithm at the same three speeds is shown 
in Figures 5 - 7. A summary of the rms error for each 
test run appears in Table 2. 
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I Speed I Rob ust Controller I PlD C: ontroller I 
(kmph) 

20 
30 

rms error rms error 
0.1085 m 0.0857 m 
0.0751 m 0.0858 m 

I 40 i 0.0953 m I 0.0779 m I 

Table 2: RMS Error for PID and Robust Controllers 
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Figure 2: Robust Controller, V, = 20 knzph 
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Figure 3: Robust Controller, V, = 30 kmph 
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Figure 5: PID Controller, V, = 20 kmph 
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Figure 6: PID Controller, V, = 30 kmph 
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Figure 7: PID Controller, V, = 40 kmph 

Figure 4: Robust Controller, V, = 40 kmph 
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6 Summary and Conclusions 
This paper presents experimental results for a ro- 

bust lateral control system designed for an automated 
vehicle. The benefits of a robust control algorithm 
include guaranteed stability over a wide range of op- 
erating conditions and a fixed controller as opposed 
to gain scheduling. For this application, the uncer- 
tainty in vehicle velocity and cornering stiffness were 
modeled as unstructured additive perturbations in 
the frequency-domain. Based on the expected uncer- 
tainty modeling, interpolation techniques described 
in [25] were used to design a robust lateral control al- 
gorithm. The robust controller was then tested on a 
GMC Jimmy test vehicle that was modified for drive- 
by-wire operation. Testing was conducted on straight 
sections of an instrumented 1 mile test track. A PID 
controller, that was tuned on the vehicle, was also 
implemented for comparison purposes. 

Although the robust controller performed satis- 
factoriIy, the vehicle control experiments highlighted 
several implementation difficulties. The uncertainty 
modeling was fairly conservative, which resulted in a 
performance tradeoff. Unmodeled uncertainties like 
steering actuator backlash and center steering offsets 
were also problematic. In addition, the robust con- 
troller was sensitive to initial vehicle orientation at 
the start of the test runs. Future research will focus 
on incorporating these types of uncertainty into the 
controller design as more structured uncertainty. By 
incorporatin more knowledge of the system uncer- 
tainty into t t e  robust design, performance can prob- 
ably be improved while still maintaining the desired 
robustness to parameter changes. 
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