
Proceedings of the 34th 
Conference on Decision & Control 
New Orleans, LA - December 1995 FP15 5:lO 

Interpolation with Bounded Real Rational Units 
with Applications to Simultaneous Stabilization 

Mike Bredemann Chaouki T. Abdallah Peter Dorato 
Sandia National Labs University of New Mexico University of New Mexico 
Dept. 9222, MS 0972 EECE Department EECE Department 

Albuquerque, NM 87185 Albuquerque, NM 87131 Albuquerque, NM 87131 
mvbrede@ sandia. gov chaoukiQeece. unm. edu peterQeece.unm. edu 

ABSTRACT 

In this paper we present sufficient conditions for 
the existence of a bounded real rational unit in 
Hm to exactly interpolate to points in the right 
half plane (RHP). It is shown that these suffi- 
cient conditions are equivalent to the necessary 
and sufficient conditions for the existence of a 
bounded real irrational unit in Hm to interpo- 
late to points in the RHP, as initially described 
by Tannenbaum. The technique is then applied 
to the simultaneous stabilization problem. 

1 Introduction 
Bounded real interpolating units in H m  have ap- 
plications in robust control and simultaneous sta- 
bilization. Tannenbaum [9] applied bounded real 
interpolating units to the robust stabilization of 
a single plant using a stable controller. Applica- 
tions in simultaneous stabilization of SISO plants 
are discussed in [I] and [2]. 

In this paper, sufficient conditions to interpo- 
late to points in the RHP with bounded real ra- 
tional units are presented. These sufficient con- 
ditions are shown to be equivalent to the nec- 
essary and sufficient conditions to interpolate to 
the same points in the RHP with bounded real 
irrational units. An interpolation algorithm is 
applied to the construction of a controller for two 
simultaneous stabilization examples. 

This paper is organized in the following man- 
ner. In Section 2, the background of the bounded 
unit interpolation theory is discussed. The bound- 
ed real rational unit interpolation theorem is pre- 
sented in Section 3. The sufficient conditions of 
this theorem are equivalent to the necessary and 
sufficient conditions for existence of a bounded 
real irrational interpolating unit as indicated in 
Section 4. The new interpolation algorithm is 
applied to the simultaneous stabilization prob- 
lem in Section 5. Finally, the conclusions are in 
Section 6. 

2 Background 
The problem of stabilizing n different plants is 
a longstanding problem in the robust control lit- 
erature. In [l], it was shown that under some 

conditions, the simultaneous stabilization prob- 
lems of 3 or more plants is reducible to that of 
interpolating a given set of points with bounded 
real units in Hm. A similar interpolation prob- 
lem is discussed by Tannenbaum in [8] and [9], 
for the purpose of stabilzing plants with uncer- 
tain gains. His approach uses the irrational map- 
ping U ( s )  = e-’(’) to convert the search from a 
bounded real interpolating unit, U ( s ) ,  to a pos- 
itive real interpolating function, Z(s ) .  He then 
uses Youla-Saito’s 1121 positive real testing ma- 
trix to determine whether such a Z ( s )  exists. 
Unfortunately, this leads to an irrational con- 
troller, which can only be realized using a ra- 
tional approximation. Ganesh and Pearson [6] 
describe such a rational approximation through 
the truncation of the infinite Taylor series expan- 
sion. Although the truncated series comes arbi- 
trarily close to the interpolation points, it does 
not exactly interpolate to the desired points with 
polynomials of finite order. It also provides no 
indication of what minimum order is necessary 
to be suficiently close. 

There are several interpolation mappings re- 
lated to the mapping presented in this paper. 
This paper presents a mapping, which creates a 
bounded real rational unit exactly interpolating 
to values in the RHP. There are two obvious a p  
proaches, which could possibly achieve this re- 
sult. One approach would be to start with an 
interpolation mapping, which produces units in 
H m  (see for example [5]), and then impose mag- 
nitude restrictions to create a bounded function. 
Another approach would be to start with an in- 
terpolation mapping, which produces bounded 
rational functions, and then impose numerator 
restrictions to create a unit. The latter is the 
approach adopted in this paper. It is interesting 
that this approach is related to the positive real 
mapping as discussed in Section 4. 

The problem of finding a bounded rational 
function, which interpolates to a collection of 
points inside the unit disk is discussed in [3] and 
[ll]. Only interpolations in the right half plane 
are addressed in this paper, but the procedure is 
similar for the unit circle. The problem of find- 
ing a bounded real rational polynomial function, 
Ul(s), which interpolates to a collection of points 
in the right half plane, is discussed by Kimura in 
[7] and summarized below. 
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Let the interpolation points be as follows: 

Ul(Cri) = pi (1) € C ,  ai EC+ 

Ul(cri) = pi1), * Ul(Zi) = pi 

l l~l(S)I lco < 1 * IlWS) l l ,  < 1 

where complex interpolation points appear in con- 
jugate pairs, i.e. 

(1) 
-0) 

and where real interpolation points are reaL It 
is then known that 

where 

The first interpolation condition, Ui(al) = Pi (1) , 
is satisfied by this mapping. So, the interpolation 
at s = a1 is no longer imposed on U2. The re- 
sulting interpolatin s imposed on U2 are derived 
from the mapping h). 

This procedure continues iteratively until there 
is only one interpolation point. Any bounded ra- 
tional polynomial function, which interpolates to 
the single interpolation condition of the last m a p  
ping, may be used to reconstruct the bounded 
function, U l ( s ) ,  which interpolates to all of the 
desired points, by applying each of the succes- 
sive inverse mappings in reverse order. The nec- 
essary and sufficient conditions for existence of 
a bounded function that interpolates to these 
points is that the magnitude of all the interpw 
lation values in all of the mappings be bounded 
by 1, i.e. 

(j) /pi I < 1, V j  = 1 , 2  ,..., k 
vi = j ,  j + 1, . . . , IC 

This is equivalent to the Nevanlinna-Pick (Bounded 
Real) testing matrix, GBR(P(')), being positive 
definite, where 

(3) 
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The fact that the interpolation values appear 
in complex conjugate pairs and are real when ai 
is real ensures that a bounded real function can 
be formed when (3) is positive definite. Notice 
that this map ing ensures that the denominator 
of Ul(s) in (2p is a strictly Hurwitz polynomial. 
Our  only task remaining is to find the conditions 
in this mapping that will ensure the numerator 
is also U strictly Harwitz polynomial. This will 
give us a unit in Ha, with a norm bounded by 
1. 

3 Interpolation with Bounded 
Real Rational Units 

In this section, sufficient conditions are derived 
for the existence of a finite order rational bounded 
real unit in H m  which exactly interpolates to 
prescribed complex values at finite points in the 
open right half s-plane. It is shown in (lo] that 
the values of a real unit in Ha must have the 
same sign at all points on the real line in the 
right half plane. Values on the nonnegative real 
line must be either all positive or all negative. 

For a real (i.e. real for real points) interpolat- 
ing unit, the complex interpolation values must 
appear in complex conjugate pairs. The require- 
ments, that the complex interpolations appear 
in complex conjugate pairs and that the non- 
negative real interpolations all have the same 
sign, ensure that the resulting unit is real. With- 
out this assumption, the testing matrices may 
still indicate the existence of a bounded unit, but 
the unit would contain complex coefficients. 

Let -yil), V i  = 1,2,. . . , k represent the desired 
interpolation values at the corresponding RHP 
points, s = ai. Let the subsequent mappings be 
defined as 

ln(yil))-ln(yjl)) ( a i + ~ i  
,Vi  = 2 , 3  ,..., k 

$1 = !+-I--- ln(+))+ln(Til)) (ai-al) 

(4) Vi j, j + 1, . * . , k 

In the theorems that follow, it is assumed 
that the simple interpolations appear in complex 
conjugate pairs. Without loss of generality, the 
interpolation values on the real line are assumed 
to have a positive sign. Otherwise, their negative 
values are used. 

Theorem 1 (Bounded Real Rational Unit  
Interpolation Theorem - Simple Finite In- 
ter polat ions) 



Suficient conditions to find a bounded real 
rational unit, U ( s ) ,  such that 

U(cyi) = ri (1) , Vi = 1,2, .  . . , k 

are that, either 

1. 

O<lri ( j )  1<1, ' d j = l , 2  ,..., k 

V i =  j , j+ l ,  ..., k 

2. 

and the Nevgnlinna-Pick bounded real test- 
ing matrix, N B R ( ~ ( ~ ) )  defined above, is pos- 
itive definite. 

Proof: See [2]. 

Comments: The main idea of this theorem and 
its proof can be easily seen from the basic Nevanlinna- 
Pick mapping. 

If, in addition to the requirement that IlV2(s)llm < 
1, IIU2(s)lloo is further restricted to be less than 

will also be bounded by l#)l since the Blaschke 
product, (z), is bounded by 1. Therefore, 
under this condition, the numerator is a strictly 
Hurwitz polynomial from the small-gain theorem 

In the event that the interpolation require- 
ments on V2(s) do not happen to satisfy this 
additional restriction using the original interpo- 
lation points, the more stringent requirements 
could be relaxed by using the n-th root of the 
original interpolation points. In the limit as n + 

orem 1 reflect the sufficient conditions (and con- 
jectured to be necessary conditions) for the in- 
terpolation requirements on V2(s)  to be satisfied 
by a bounded function in the limit. 

Irl (1) 1, then the second term in the numerator 

141. 

CO, I p yl I increases to 1. The conditions of The- 

4 Equivalence with Bounded Real 
Irrational Units 

In this section, the sufficient conditions of The- 
orem 1 are shown to be equivalent to the neces- 
sary and sufficient conditions for the existence of 

the irrational function f(s) = e-'('), which in- 
terpolates to the same points. The approach de- 
scribed by Tannenbaum in [9], imposes the inter- 
polation requirements on Z ( s ) ,  which must be a 
positive real function for e-'(') to be a real func- 
tion bounded by 1. Tannenbaum used Youla and 
Saito's [12] necessary and sufficient conditions for 
a positive real interpolating function to deter- 
mine whether a bounded real unit of the form 
f ( s )  = e-"(") exists. By transforming the in- 
terpolation conditions from the original require 
ments on the bounded real unit, f(s), to those 
of the positive real function, Z ( s ) ,  a fairly sim- 
ple test can be performed to determine whether 
such a positive real Z ( s )  exits. If the original in- 
terpolation points for f ( s )  are f(ai) = pi, Vi = 
1,2,. . . ,k, then after the transformation, the in- 
terpolation conditions become Z ( q )  = - ln(Pi), 
Vi = 1,2,. . . , I C .  The necessary and sufficient 
conditions for the existence of a positive real 
function, Z (s), which interpolates to these points, 
are that Youla-Saito's positive real testing ma- 
trix, g p ~ ( P )  shown below, be positive definite, 
and that the interpolation points appear in com- 
plex conjugate pairs and are positive real when 
s is positive real. 

I 

It should also be noted that the requirement 
that the matrix, f i p ~ ( P ) ,  be positive definite is 
only a necessary and sufficient condition for the 
existence of a bounded real interpolating unit 
of the form f(s) = e-'("). When the inter- 
polation points are entirely complex, the form 
f(s) = -e-'(') may also need to be checked, 
when determining the existence or the minimum 
order of a bounded real interpolating unit, as is 
illustrated in [2]. 

Theorem 2 (Rational-Irrational Bounded 
Unit Equivalence Theorem) 

The Youla-Saito positive real testing matrix, 
N P ~ ( r ( l ) )  defined above, is positive definite, if 
and only if 

.. 

and the corresponding Nevanlinna-Pick bounded 
real testing matrix, N B R ( ~ ( ~ ) )  defined above, is  
positive definite. 

h 

Proof: See [2]. 
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Comments: The proof identifies an invertible 
matrix, X ,  such that 

X*ep&(l))X = 

1 0 - l n ( - p )  -In(#)) 

6BFt (7(2) 1 

5 Applications to Simultaneous 
Stabilization 

In this section, a bounded unit interpolation al- 
gorithm, developed in [2], is used in conjunction 
with simultaneous stabilization problems. When 
the sufficient conditions of Theorem 1 are,sat- 
isfied, there exists a bounded function, U2(.s), 
which satisfies the following interpolation require- 
ments for some n sufficiently large. 

V i = 2 , 3 ,  ..., k 

Using U2(s) = fl- Ui(s) and replacing 71') 
with its n-th root in (5), the desired real rational 
bounded interpolating unit is [U1(s)ln. 

Example 1 Find a stable controller that simul- 
taneously stabilizes the two plants, 

&(s - l ) ( s  - 2) 
(s - 4 ) 2  

&(s - l ) ( s  - 2) 

Pl(4 = 

P 2 ( 4  = (6) S2 

Solution: Let hl (s )  = h2(s) = (s + 1)2, so that 

&(s - l)(s - 2) 
(s + 1)2 

N l ( S )  = N2(s) = 

Forming the function, W ~ ( S ) ,  which must be 
bounded by a unit in accordance with the solu- 
tion of this problem described in [l]  and [2], then 

A unit, W(s),  which bounds W2(s), is given by 

&(18s + l ) ( &  + 1) 
(s + 1)2 

w(s) = 

so that 

7:') = & * = 0.29984, 7:) = a = 0.130588 

The positive real testing matrix is then given by 

1.204493773 1.080066641 [ 1.080066641 1.017853074 ] 
The upper left nested principal minors are 1.2 
and 0.059. Since this matrix is positive definite, a 
solution to the strong simultaneous stabilization 
problem exists for the two plants in (6). 

Using the bounded unit interpolation algo- 
rithm in [2] it is easy to verify that n = 5 is 
the minimum root necessary to interpolate to 
these two points with a bounded unit using the 
Nevanlinna-Pick mapping. The 5th root of each 
of the original interpolation points becomes 

a1 = 1, @ = 70.29984375 = 0.785921193 

a 2  = 2, @ = y0.130588235 = 0.665550188 

Calculating the modified interpolation point in 
the first Nevanlinna-Pick mapping 

we get 

a 2  = 2, &) = -0.963406336 

A function, Ui(s), bounded by 1 and interpolat- 
ing to this point is 

U;(.) = /3?) = -0.963406336 

Therefore, the function bounded by v0.29984375 
interpolating to the points in the first standard 
Nevanlinna-Pick mapping of the 5th root of the 
original interpolation points is 

U ~ ( S )  = V0.29984375 ~ Vi(.s) = 0.757161457 

The bounded unit, U ( s ) ,  interpolating to the 
original interpolation points is formed from U ~ ( S ) .  

70.29984375 + ( 3 ) U 2 ( s )  
1 + 70.29984375(5)U2(s)  

U ( s )  = 

0.071016147(s + 53.66018683) [ (s + 3.93911596) 
U ( S )  = 
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The stable 5th order compensator, C(s), is formed 
from the unit, Ul(s), which interpolates to Dl(s )  
at the RHP zeros of Nl(s). 

C(S) = 99,571 

1 ~s+100)(s+10.747)(s+0.00444)(s2+11.8797s+85.011) 
( ~ f 5 3 . 6 6 ) ~  

Next, consider the problem of designing a stable 
compensator which stabilizes a pendulum, with 
delayed control effort, about three positions, 0 = 
O,?r/2, and x .  The nonlinear dynamics of the 
pendulum are given by 

1 e + l /gsine = -T(t - T )  
12m 

where 8 is the angular position of the pendulum, 
T is the input torque, and T is the control effort 
time delay. If the pure time delay term e--79 is 
approximated by the first order rational function 
( l - s /27 ) / (1+~ /27)  and the pendulum dynamics 
are linearized about the three points above, one 
obtains the three plant transfer functions of the 
following example, using the parameter values 
l / g  = 1 and T = 1. 

Example 2 Find a stable controller that simul- 
taneously stabilizes the three plants, 

-(s - 2) 
(2 - l)(s + 2) 
-(s - 2) 
s y s  + 2) 

P l ( 4  = 

Pz(4 = 

(7) 
-(s - 2) 

p3(s)  = (232 + l)(s + 2) 

where P1(s),P2(s) and P 3 ( s )  correspond to  the 
linearizations about e = ?r,?r/2, and 0 respec- 
tively. 

Solution: If we let hl(s) = h2(s) = h3(s) = 
(s + 2)3, so that 

then for a stable compensator, C = w, 
we must satisfy the interpolation conditions 

3 
16 UI(2) = 01(2)  = - 

v,(oo) = D l ( o 0 )  = 1 

The last two conditions in (8) are required to 
ensure that the term [Vl(s) - Dl(s)]  has relative 
degree equal to 2 at infinity, as discussed in [2]. 
Computing the functions, 

NI- (3) Di (3) - N,: (3) D ~ ( s )  
W&) = , V i  = 2 , 3  (9) 

Ntr (4 
which must be bounded by a unit for the solution 
of this problem described in [l] and [2], then 

2 w 2 ( 4  = &, w 3 ( 4  = ( - q q ? Z  
A Unit W ( s )  which bounds Wi(s) in this case is 
given by 

2(&j + w(s) = 
(s + 2)2 

Using the equation 

the interpolation conditions on I Iecome 
10404 
15000 

1 
5000 

u(2) = - 

U(oo)  = - 

From [2], such a bounded real interpolating unit 
exists, and therefore, a solution to the strong si- 
multaneous stabilization problem exists for the 
three plants in (7). 

Multiplying the original interpolation points 
by a constant, k > 1, but small enough to still 
allow interpolations with a bounded real unit, 
Uk(s), then the bounded unit $k(s) interpo- 
lates to the original points. The maximum value 
of k can be computed using the procedure d e  
scribed in [2]. Subsequent products with $Uk(s) 
must have an Hm norm less than k to remain 
bounded. Choosing the factor k = 1.25, then 
the new simple interpolation points become 

Uk(2) = 0.867, U k ( m )  = 0.00025 

Using the techniques developed in [2], it is easy 
to verify that n = 1 is sufficient to construct a 
bounded real interpolating unit. From the stan- 
dard Nevanlinna-Pick interpolation mapping, one 
such unit is 

0.00025(s + 55851.31643) 
(s + 14.10533968) 

1 

0.0002(s + 55851.31643) 

uk(s) = 

* Vo(.) = f k ( 4  

* = (s + 14.10533968) 
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To satisfy the interpolation condition on the first 
derivative at s = 00, we follow the same proce- 
dure as in [2]. 

f h ( S )  = [1+ -- 
(s + d i )  (s + 2) 

d d 

d t  t=O d t  t=O 

3 ~1 = -55,637.21109 

In order for IlS21(s)llm to be less than k = 1.25, 

+ d l  > 222,548.8444 

Arbitrarily choosing d l  = 250,000.0, we get a 
bounded real interpolating unit 

u(s) = 0.0002 * 

st23.145 9+55851.316 9+194,361.644 [' (~+2)~~+14.l0534)(~!250,000.0) '3 
Solving for Ul(s) = % and then for C(s) re- 
sults in a stable third order compensator 

C ( s )  = 1.0802 x lolo - 
s+1.4045) sf2 )  .9+3.4493) [ 

6 Conclusions 
In this paper, the necessary and sufficient condi- 
tions to interpolate to points in the RHP with a 
bounded real irrational unit in H m  were shown 
to be equivalent to new sufficient conditions to 
interpolate with a bounded real rational unit in 
Hm. It is conjectured that the new sufficient 
conditions for existence of a bounded real ratio- 
nal unit in Hm are also necessary. An interpola- 
tion algorithm is used to achieve exact interpola- 
tion with a bounded real rational unit. Examples 
illustrate the bounded real rational unit interpo- 
lation algorithm as applied to the construction 
of simultaneously stabilizing controllers. 
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