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Abstract 

A nonlinear observer for a general class of single- 
output nonlinear systems is proposed based on a 
generalized Dynamic Recurrent Neural Network (DRNN). 
The Neural Network (NN) weights in the observer are 
tuned on-line, with no off-line learning phase required. The 
observer stability and boundness of the state estimates 
and NN weights are proven. No exact knowledge of the 
nonlinear function in the observed system is required. 
Furthermore, no linearity with respect to the unknown 
system parameters is assumed. The proposed DRNN 
observer can be considered as a universal and reusable 
nonlinear observer because the same observer can be 
applied to any system in the class of nonlinear systems. 

1 Introduction 

Ever since the introduction of the Luenberger 
observer [IO], there have been many papers devoted to 
the subject of nonlinear observers. Most of the early 
attempts were based on extending the linear methodology 
through various kinds of linearization techniques. A survey 
of these results can be found in [I41 and [20]. 

The first nonlinear adaptive observer was proposed in 
[2] based on certain coordinate transformations and an 
auxiliary filter. Marino [ I  I] presented a simple but restricted 
observer based on the satisfaction of strict positive real 
(SPR) conditions. A global adaptive observer for a class of 
single-output nonlinear systems which are linear with 
respect to an unknown constant parameter vector was 
presented in [12]. Recently, adaptive observers with 
arbitrary exponential rate of convergence were considered 
by Marino and Tomei [13]. However their assumption of 
linearity with respect to any unknown system parameters 
and their conditions on transforming the original system 
into special canonical form are not often met for many 
physical systems. 

Neural networks (NN) have been used for 
approximation of nonlinear systems, for classification of 
signals, and for the associative memory. For control 
engineers, the function approximation capability of NN is 
usually used for system identification or identification- 
based ("indirect") control. In [IQ], a state estimator has 
been designed for use with Radial Basis Function Neural 
Networks. Recently, Levin and Narendra [7] has addressed 
the problem of estimating unknown system states for 
certain discrete-time nonlinear systems. An "off- line" 
trained feedforward NN is employed to generate the 
estimated states. However, very little is known about the 
use of NN for designing an on-line NN observer with 
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stability proven for a prescribed class of nonlinear systems. 
In this paper a generalized DRNN is used for 

designing a nonlinear observer. A feedfoward NN is 
insetted in the feedback path to capture the nonlinear 
characteristics of the observer system. We will show that 
the state estimation errors are suitably small and the NN 
weight parameter errors are bounded. 

Compared with other NN techniques, the NN weights 
are tuned on-line, with no off-line learning phase required. 
Comparedwith other adaptive observer methods, a 
nonlinear state-space transformation of the nonlinear 
system is not required, and a general class of nonlinear 
systems is considered. The "output matching" condition [6] 
is not required. Of course, no exact knowledge of the 
function or functional in the system is required. 
2 Preliminaries 

A ER""" 
We define the norm of a vector x ER" and a matrix 

llxll = G x  1 llAlls = 4-7- [ A  '41 =%,m[Al (2.1) 
where h,,,,[.] and hill,,,[.] are respectively the maximum 
and minimum eigenvalue. 

Given A = [U,,] and B E R"'"" , the Frobenius norm 

is defined by 

with tr(.) the trace. The associated inner product is 

< A,B>,=tr(ATB). 

(2.2) 
2 llAllF = tr(ATA) =xu; 

The norm Ilxll; with x ( t )  E R" is defined as [5] 

llxlg = (J ~e-"('-')xT(z)x(z)d)l'2 . (2.3) 
2.1 Stability of Systems 

Consider the nonlinear system 
i = f(x,t) , y = h(x, t )  (2.4) 

with state x ( t )  ER". We say the solution is unifomly 
ultimately bounded (UUB) if there exists a compact set 
U c R" such that for all x(to) = xo E U ,  there exists an 

& > 0 and a number T(&,xO) such that IIx(f)ll < E  for all 

2.2 Nonlinear Plant, Observer, and Error Dynamics 
t l t o + T  [8]. 

Definition 2.f: The linear system 
i =  Az, .z E R " ,  
y = CTz, Y E R  

is said to be in observer canonical form if A and C are 
given by 
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x" = ( A  + KC*)? + b [ y  + g"u + d ( t )  + ~(t)] . (2.9) j i  = CTx" 

- I' - 

i . (2.6) 
0 

0 
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where the functional estimate errors 7 , g" are given by 

7 = f ( x )  - j ( i )  , 

j i  = W(S)[Y + gu + d ( t )  + v( t )]  

g" = g(x) - g(2) . (2.10) 
The output estimation error y" = y - i is given by 

(2.1 1) 
where s denotes the differential operator d / dt . The linear 
transfer function W(s)  is realized using standard 

techniques by the triple ( A  + KCT , b , C). It has the form 

(2.12) blsn-1+ ... + + b, W(s) = 
sn + k1sn-l + + k,,-l+ k,, ' 

If the entries of the vector b are positive constants 
[q & ... b,,] , then W ( s )  may be strictly positive real 
(SPR). 

Lemma 2.1: If a strictly proper rational function 
H(s )  = C T ( d  - A)-'b with A a Hurwitz matrix is SPR, 
then there exists a positive definite symmetric matrix P 
such that 

ATP+PA=-Q, Pb=C (2.13) 
with Q a positive definite symmetric matrix. 

Lemma 2.2-Bouncfness of systems with exponentially 
stabfe stricfky proper transfer funetion: C 
time invariant system in state-space cepr 

X( t )  = Ax( t )  + Bu( t )  x(0) = xo (2.14) 

with x ( t )  ER" , u(t )  ER" , the matrices A E PXn, 
B ER"'"' , and let transition matrix Q(t) be bounded by 

IIW~)II, = lleA'll\ 5 moe-a' (2.15) 

where the number a = -mgxRe hi[Al  if all the eigenvalues 

of A are distinct, and mo is a positive constant [21]. Then 
every solution x ( t )  of (2.14) is such that 

IIxWllS kl + k2IIUII; I vt 2 0 (2.16) 

with kl is exponentially decaying term due to xo and k2 is 
a positive constant which depends on eigenvalues of A . 
Proof The solution x ( t )  of (2.14) can be expressed as 

x( t )  = @(t,O)xo + h @ ( t , z ) B u ( ~ ) d ~  . 
Therefore, 

2 

(2.17) 

(2.18) 

Taking the condition (2.15) into account and applying the 
Cauchy-Schwartz inequality, we obtain 

IIx(t)lls Il@(fmIl,Ilxoll+ B M I  ;ll@(~J)lIA IlWIld. 

with ml = BMmO. Using the fact I he-a(t-')dT 5 1 / cx , 

IIX(t)lls MollJ.OIle-a' +--<I "1 oe f -a(/-T) 11.(.)]1* dT)"2 (2.20) 6 
which completes the proof. 

2.3 Dynamic Recurrent Neural Networks 
A generalized DRNN can be constructed using an 

arbitrary linear transfer function and a nonlinear mapping 
from a feedfolward NN as shown in Fig. 2 [16]. The linear 
transfer function and the NN constitute a closed feedback 
loop since a subset of the NN's inputs are a function, 
through the evolution of the linear system, of the outputs 
from previous operations. Given the system state vector 
x E R", the systematic description of a generalized 
DRNN can be given by 

(2.21) 
with A f R n x n  , B e R n x n  , C ER"'", U E Rn and < ER'". It 
is plain that the Hopfield net is a special case of this 
equation, which is also true of many other dynamical NN in 
the literature. Typical examples of the function of.) are 
sigmoid, hyperbolic tangent, gaussian. 

The DRNN equation is in vectors as 
X = A x + B [ F V ~ ~ ( V ~ X ) + ~ ]  (2.22) 

with the vector of activation functions defined by 

o(z)  = [o(zl) ... ~ ( z , ) ] ~  for a vector z E Rn . The thresholds 
are included as the first columns of the weight matrices; 
any tuning of W and V then includes tuning of the 
thresholds as well. 
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The main property of a feedfotward NN inserted in the 
feedback path is the function approximation property [4]. 
Let f ( x )  be a smooth function from R" to Rq. Then, it 
can be shown that, as long as x is restricted to a compact 

set S of x ER" , for some sufficiently large number of 
hidden layer neurons Nh there exist weights and 
thresholds such that any continuous function on a compact 
set can be represented as 

f ( x ) =  W%(VTX)+&. (2.23) 
The value of E is called the NN functional approximation 
emr .  For any choice of a positive number e N  one can find 
aNNsuchthat E ~ E N  "XES.  

For estimation and control purposes, the ideal 
approximating NN weights exist for a specified value of&, . 
Then, an estimate &) of f ( x )  can be given by 

F ( x )  = $'To(PTx) (2.24) 

where fi, are estimates of the ideal NN weights. 
The NN in this paper is considered with the first layer 

weight fixed. This makes the NN linear in the parameters. 
Therefore, select V =' P so that the static NN output y is 
given by 

y = W % ( x ) .  (2.25) 
Then, for suitable NN approximation properties, some 
conditions (e.g., [18]) must be satisfied by ~ ( x ) .  In fact, it 
must be a basis. 

Therefore, there exist constant weights W so that the 
nonlinear function can be represented as 

f ( x ) = W T o ( x ) + W  (2.26) 

where 11&(x)11 I ( x )  with the bounding function 

E ~ ( x )  EC'(S) known. It has been shown in [I] that the NN 
functional approximation e m r  E(X) for l-layer NN is 

fundamentally bounded below by a term of order ( l l r ~ ) ~ ' "  , 
where n is the number of fixed basis functions and d is 
the dimension of the input to the NN. However, as seen in 
our main result of Theorem 3.1, the NN observer 
estimation error may still be made small through the 
judicious choice of certain observer gains. 

3 DRNN Observer Design 
3.1 Observer Error Dynamics and Structure 

The continuous nonlinear functions in the system 
(2.7) can be represented by NNs with constant "ideal" 
weights W and sufficient number of basis functions o(.) , 

f ( x )  = W ? C ~ ( X )  + E ~  , E f  I E ~ , . ,  = constant 

g(x) = W:O g ( ~ )  + E ~  , I = constant (3.1) 

where subscripts " f "  and " g "  denote the function f ( x )  
and g(x) , respectively. We assume that the ideal 
weights, Wf and Wg are bounded by known positive 
values [9] so that 

where ct;,M are known values. 

functions of f (x) and g(x)  be given by 

/pqli,F 5 4.M I i = f,g (3.2) 

Let the NN functional estimates for the nonlinear 

j ( i )  = w;o, (i), i(i) = fi;o &) (3.3) 

where the current weights +' and +g are provided by the 
weight tuning algorithms. The expression for the functional 
estimate error f" defined in (2.10) is given by 

7 = WfT. f ( x )  - $;of (2) + Ef  . (3.4) 

Cf = o f ( X ) - " f ( 2 ) .  (3.5) 

7 = E,& f (i) + Wf ( t )  + E f  (3.6) 

Ff =W,-wf (3.7) 

Wf ( t )  = WFCf . 

g" = iyCr(i) + wg ( t )  + E 

The input layer output error with sigmoid activation for 
a given x is defined as 

Adding and subtracting W'T. (2) from (3.4) yield 

where the weight estimation error is defined as 

and the disturbance terms wf(t) is given by 

(3.8) 

Following the same arguments for f", we have an 
expression for 2 

(3.9) 
where the disturbance terms wg(t) is given by 

wg( t )  = w&Tgg. (3.10) 
Fact 7: The disturbance function w(t) is bounded 
according to 

l l w i ( t ) I ) q  i = f , g  (3.11) 
with U,, ug > 0. It is obvious from (3.2) and the property of 
the neural activation functions. 

Then the proposed observer system (2.8) and the 
observation error dynamics (2.9) become 
E =  Ai+b[fi?&, +fi~&gU-vf(t)-vYg(t)]+K(y-C2) (3.12) 
jj = C T i  
and 

x" = ( A  + KCT)X" +b[@;+ + w,(t) + {E,;G 

7 = CTX" 
+ W , ( ~ ) + E ~ ) U + E ~  + d ( t ) + v f ( t ) + v g ( t ) ]  (3.13) 

with 0 =o(2) . 
It is required to find the output estimation error j7 

?= W(s)[@;l$, + w,(t)+{@&,+wg(t)+Eg}u(3.14) 
+ E,f + 4 t )  + v/ (4 + vg (41 

where W(S)  is a known proper transfer function with stable 

poles, and is realized by the pair ( A  + KCT , b , C). The 
block diagram representation of the proposed observer and 
the plant is shown in Fig. 1. 

3.2 Stability AnalysisSPR Lyapunov Approach 

the form of 
The output estimation error (3.14) can be written in 

(3.15) 

where C ' ( s )  is proper transfer functions with stable poles, 

& =  C'(s)G and L(s) is chosen so that W(s)L(s )  is an 
SPR transfer function. Therefore the "-" notation indicates 
the signal filtered by C' (s) . 

y" = W(s)  L( s)[ q-kf + qkgU + F, ( t  ) + wg ( t  )U 
6f + ITf +6 + 6TgU + d ( I )  + F, ( t )  + Fg ( t ) ]  
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The mismatch terms 

6 f = L-*fs)[@~~/]-@~L-l(,)[(T/] (3.1 6) 

5 K = 6 ’ ( s ) [ @ ~ O K u ] . - @ ~ L - ~ ( s ) [ ( T K ] u  (3.17) 
and w e  have the following fact for the subsequent proof. 
Fact 2: The  mismatch values of Sf and 6, a re  bounded 
according to 

and 6, is defined as 

(3.18) 

lkxll C~IliitRIIF (3.19) 
IF f ll Cf IlFfIlF 

where c f  and cg a r e  computable positive constants. It 
can b e  easily s e e n  from the standard norm inequality and 
the property of proper transfer function. 

For some cases W(s)  it is possible that no L(s)  can 
be found such that W(s)L(s )  is a n  SPR transfer function. 
In such cases the output estimation error still can b e  
manipulated and put in the form of (3.15). For example, 
see [5]. Note that each  term (3.14) need to b e  filtered by 
C 1 ( ( s ) .  But this is not important because w e  can realize 

the filtering on the  basis function only for implementation 
as shown later. Therefore this error dynamics can  b e  used 
only for analysis purposes to show that the s ta te  estimation 
error x“ and the weight estimation error f? a r e  bounded. 

The  state-space realization of (3.15) is given by 
i = AcZ+bc[f;gf + fg%igu+ Ff ( t > +  Fg(t>u 

+6 f +“r + E g U + f 7 ( t ) + V ; ( t ) + i j g ( t ) ]  (3.20) 

where ( A ,  E RnX” , b, ER” , C, E R ” )  is a minimal s ta te  

representation of W(s)L(s)  = CT(s1- A,)-’& with 

y = CTz“ 

cc =[I 0 ‘.. o3T. 

DRNN 
Observer 

J U 

Fig. 1. Nonlinear observer using dynamic recurrent 
neural network. 

Theorem 3. I: Assume the control input U is bounded 
by positive constant ud.  Consider the observer system 
(3.12) and the robustifying terms are  given by 

v l ( t )  = -D,? / i = f, g (3.21) 

with Df 2 u f o M ,  D, 2ugoEnud and o, =o,,[L-‘(s)]. Let 
the  NN weight tunings b e  provided by 

@j = F f i ? f Y - K j . F f l y ” l @ j  (3.22) eK = F,gKj7u-~ gFgIy”l@g 

where Fi = CT > O  is any constant design matrix 
governing the speed  of convergence and K, > 0 is a design 
parameter with i = f ,g .  Then the s ta te  estimates ;(t) and 
the NN weight estimates k(c) are UUB. 

Proof: Consider the Lyapunov function candidate 
(3.23) 

with P =  PT > O .  By manipulation W(s)L(s) is SPR, 
according to the Lemma 2.1, the time derivative L is 

= - i y T Q F  + j7{@;gf + @gT6gu+ Ff + F,u + Ef +Egu 

~ = + y T p y + + t ~ ( @ T ~ - l @  f f f >  +Ltr 2 CW,F, -T - 1 -  W,) 

-T -1-T  +d+6, +”; + 8 , + ~ , } + t ~ ( @ ~ F ; ’ ~ ~ ) + t ~ ( W g  Fg Fb, ) 

(3.24) 
Evaluating (3.24) along the  trajectories of (3.21) and  (3.22), 
w e  have 

I: -~~,m(Q)/1~112 + IYl@+ Ef - E g U  + Cf 1p- I I F  + c g ~ ~ @ g ~ ~ F  } 

+ kf F~ 171 tr {JF: (vf - )> + k , ~ ,  Iyltr {E ,~  - J F ~  )} ‘ 

(3.25) 

Using fact 2, t r (FT(W-  @)I 5 W M ~ ~ @ ~ ~ ,  - l/Fll:, and 

-xmin(Q)llzlr  5 -Lmin(Q)lTr 7 w e  have 

5 -lYl[$ hmin (Q)lv”l-o M {bd + E ~ , N  + E g , ~ u d  1 
(3.26) 

with b i = ~ l &  and a i = E $ , + c i / P i ,  i =  f , g .  

Furthermore, squaring the terms W 

obtain the following conditions for the time derivative i of 
L to be  negative 

171 2 min 

- B f  (af Il@f IIF - ll@$) - 0 g ( a  .ell@f IIF - ll@$)l 

IlF and ll@gllF’ we 

(3.27) i (40 M (bd + E  f , N )  + } /L,, (Q),  ! {4(J ME g , ~ U d  + P g a  / min (Q)  
or 

l l @ / I I F  l a /  / 2 + J o M ( b d + E f , N ) l P f  +a; 14 I 

Il@gll, > a , / 2 + & ~ ~ ~ , p ~ / P j  + a g / 4 .  2 (3.28) 

According to a standard Lyapunov theorem [8][15], this 

demonstrates the UUB of 11Yl1, I l @ f I I , ,  and Il@g//,. In order 

to show the  boundness of the s ta te  estimation error x ” ,  
consider the observation error dynamics (3.1 3). 

The state  trajectory Y(r) of the system (3.13) can be 
expressed as 

(3.29) 

where @(t , z )  is bounded by %e%(‘-‘) with 3, a > O ,  

After straightforward manipulation of the  s ta te  trajectory 

Y ( t )  = @(t,O)x”(O) + j ;@(.(t,T)bii(z)dT 

U“(.) = @j% f + Wf ( t )  + Ef + {E;; + Wg ( t )  +E g}U + d(t)  + Vf ( t )  + v, (t)  
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(3.29) using the standard norm inequality and Lemma 2.2, 
we obtain 

where cl is an exponentially decaying term due to initial 
condition and c2, c3, and c4 are positive and computable 
constants. And arbitrarily small estimation errors can be 
achieved by the appropriate choice of observer gain K .  
From the expression (3.30) the state trajectory l.Y(t]/ of the 
system (3.13) is bounded by the weight estimation errors 

I I f f I I F  and ~ ~ @ g ~ ~ F ,  which are shown to be bounded by the 

Lyapunov stability proof. So we can conclude that every 
signal x“, F, and f is Uniformly Ultimately Bounded. This 
completes our stability proof. 

Corollary 3.2: Assume the control input U is bounded 
by positive constant ud and that for the given vector b , for 
the transfer function W(s)  realized by the triple 

( A +  KCT, b, C) is an SPR transfer function. Let the 
robustifying terms be given by 

i = f ,  g (3.31) 
with D, 1 uf, D, 1 uR,  weight tunings be provided by 

vi ( t  ) = - DjF / l j j  

(3.32) 

where 6 = 4T > 0 is any constant design matrix governing 
the speed of convergence and K~ > O  is a design 
parameter with i = f ,  g . Then the state estimates i ( t )  and 

the NN weight estimates 6‘(t) are UUB. 
Proof: The proof is similar to the one of Theorem 3.1 and 
hence it is omitted. 
Remarks: Although the stability analysis of the proposed 
observer is similar to that of standard adaptive techniques, 
there are fundamental differences between the two 
approaches which render the proposed DRNN observer 
universal and reusable. 

Most parameter identification techniques require the 
unknown system parameters to be linearly 
parameterizable. The NN technique reported here 
does not assume the linearity in the unknown system 
parameters for the unknown functions. Hence the NN 
technique can be applied to systems with nonlinear 
functions which mav not be linearlv parameterizable. 
our NN technique does not require any preliminary 
analysis to determine the regression matrix. 
The proposed DRNN observer can be applied to a 
broad class of nonlinear systems. The nonlinearities of 
f ( x )  and g(x)  are not restricted to depend on the 
output y only, but may depend on the unknown system 
state x. 
When the relative degree of the system is greater than 
unity, W(s)  cannot be SPR [15]. In order to overcome 
this difficulty, the augmented error method and the 
normalized error method are used in [I51 and [5], 
respectively. However, notice that these two 
approaches cannot be applied to the analysis of the 
parameter identification of the proposed observer 
since the nonlinear functions f ( x )  and g ( x )  are in 

terms of the unknown system state x . As pointed out 
in [5], there is no possible solution for this kind of 
problem from the standard adaptive scheme unless 
some a priori information about the unknown modeling 
error is available. In our NN approach, the chosen 
sigmoid basis function o(x) is a bounded function for 
which a ( x )  + 1 as x + 00 and a ( x )  + 0 as x -+ - W .  

Using this property of neural activation functions we 
can circumvent the problem of the unknown modeling 
error term without resorting to any special method, e.g. 
normalized signal or augmented error. This can be 
considered as a step in extending the adaptive control 
theory to nonlinear NN techniques. 
Finally, it is emphasized that the NN weights may be 
initialized at zero, and stability will be maintained by 
the observer gain K until the NN learns. This means 
there is no off-line learning phase, which is one of the 
main features of our tuning algorithms. 

4 Simulation Results 
The DRNN observer strategies have been simulated 

on single link robot and Van der Pol oscillator. In each of 
the examples, the number of sigmoid functions was chosen 
to be I O .  The linear filter L(s) = s+3 was used to 
compensate the transfer function W(s)  which is not SPR. 
All initial conditions were taken so that a non-zero emor 
affected the performance of the DRNN observer. 
Example 4.1: Consider a single-link robot rotating in a 
vertical plane whose equations of motion [I31 are 

1 
2 Mq + -mgl sing = U, Y = 9  (4.1) 

in which 9 is the angle, U the input torque, M the moment of 
inertia, g the gravity constant, m and I are the mass and 
the length of the link. The robot parameters are (in SI 
units): m=1, /=I, M=0.5, and p9.8. Letting x, = q  and 
x2 = q ,  the state-space description of the system (4.1) is 

Y = XI 

Then the observer for the above system (4.2) is given by 
(3.12). with the theorem 3.1. The simulation parameters: 
K=[400 8 0 0 1 , ~ ~  = K g  = o . o o l , ~ J  =diug[5x104 5 x 1 0 4 ] ,  

Fg = diug[5 x lo3 5 x  l o 3 ]  ,initial conditions x = [0 O5lT 

and 
Fig. 2 shows the trajectories of the estimated states are 
bounded. 

= [0.1 0IT,  control input u(t) = sin 2t +cos 20t . 

trajectory of state q.2, trajectory of state x , , i ,  

’+ , 
II 2 4 L ” 111 I8 2 . (I I I,, 

r.u,u.r4, Tlallu.”,, 

.,,.L 

Fig.2. State estimation. 
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Example 4.2: Consider a Van der  Pol oscillator 

The  state-space representation by letting x1 = x and 
x2 = x is 

,+(x2 -1)X+x=( l+x2 + X 2 ) u ,  y = x .  (4.3) 

Y = XI 

Then the observer for the  above system is given by (3.12). 
Two separate  simulations were conducted: 'zero control 
input' and 'non-zero control input'. The  simulation 
parameters: for 'zero input': K = [600 6001, 
Ff = diug[500 5001 , K = 0.001 , initial conditions 

x = [0 O.25lT and 2 =[OS 0.5IT, The results a re  shown 
in Fig. 3, clearly demonstrating the limit cycle in the Van 
der  Pol oscillator. For 'non-zero control input', simulation 
parameters: K , = K  = 0.001, Ff = F' = diug[500 5001 , 

K = [600 6001 , x(0) = [0 0.25IT and 2(0) = [0.5 O.5lT. Fig.4 
shows boundness of the estimation errors, 

phase plane of (x,,x2), (.?,,iJ 

c , -  (05 I I ?  1 

XI. XI 

Fig.3. State estimation f o r  'zero control input'. 

T"in(irunu) i n l * < . d >  

Fig.4. State estimation for  'non-zero input' 

5 Conclusions 
W e  have presented a nonlinear observer based on 

the DRNN. The proposed observer d o e s  not require the 
nonlinear state-space transformation under some severe 
conditions and linearity with respect to unknown system 
parameters which is hard to be  satisfied in the physical 
systems. Furthermore, the  NN observer technique reported 
in this paper d o e s  not require the exact form of function or 
functional in the  system considered. Even the nonlinearity 
of the unknown function is not required to depend on the 
system output only. Compared with other NN techniques, 
w e  do not require any preliminary off-line "training or 
learning phase." 

The  main contribution of this paper is to provide a 
universal and reusable observer for the class of hiahlv 
nonlinear system. A key point in developing a n  intelligent 
system is the  reusability of the proposed system, i.e. the 

s a m e  proposed system works even if the  behavior of the  
system h a s  changed. This is the case of the  observer 
reported in this paper. 
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