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Abstract 

For linear systems with polytopic uncertainties, the 
problem of robust finite-time stabilization is re- 
duced to a system of Linear Matrix Inequalities. 

1 Introduction 

The concept of short-time stability, or finite-time 
stability, [2] , deals with systems operating over fi- 
nite time intervals, with given bounds on the initial 
and subsequent states. In particular we have the 
following formal definition. 

Definition 1 The time-varying linear system 

is said to be finite-time stable with respect to the 
given triplet ( c I , c2 ,T) ,  c2 2 c1, if 

d ( O ) Z ( O )  I c1 + d ( t ) z ( t )  5 cg; v 0 5 t 5 T 
(2) 

Systems that are asymptotically stable may not be 
finite-time stable if, over the time interval of inter- 
est, a large peaking in transient behavior occurs; 
and systems that are classically unstable may be 
finite-time stable, if the state does not exceed the 
particular given bounds over the given time inter- 
val. In this paper we focus on systems that can- 
not be stabilized in the classic sense, and consider 
the problem of designing a fixed state-feedback con- 
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troller, u(t)  = K.r(t), for the linear polytopic un- 
certain system 

x = A(t)z  + B(t)u (3) 
N where A(t )  = ai(t)Ai, B ( t )  = ai(t)Bi 

and ai( t )  2 0, Cr, ai(t)  = 1 which guaran- 
tees finite-time st,ability with respect to the given 
triplet (c1, c2, T ) .  Uncertainty is characterized by 
the time-varying parameters ai@) 

2 Rleduction to LMI’s 

With feedback the closed-loop state equations are 
given by 

X = (A( t )  + B( t )K)z  A,I(t)z (4) 

The reduction of the robust finite-time stabiliza- 
tion problem to it system of LMI’s is based on the 
following theorem. 

Theorem 1 Tht: system (4) is finite-time stable 
with respect to the triplet (c1, c2, T )  if the following 
matrix inequality 

-(A,l(t)+Az(t))+$ In (2) I, > 0, V 0 6 t 5 T 

holds. 
(5) 

Proof: 
Let V ( x )  = z ~ : c ,  with x = A,l(t)z, then V = 
z t ( A z ( t )  + A C z ( t ) ) ~ .  Now if matrix inequality 
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A z ( t )  + AcE(t) < y I  holds (where I denotes the 
identity matrix), then V < yV, which in turn 
implies V(z( t ) )  < eYtV(z(0)), i.e. zT(t)z(t) < 
e'txT(0)z(O). If we assume that the closed-loop 
system cannot be classically stabilized, then y will 
be positive, and with xT(0)s(O) 5 c1 it then fol- 
lows that xT( t )x ( t )  < eYTcl. Thus if eyTc1 = c2, 
we guarantee that xT( t ) s ( t )  < c2, hence finite-time 
stability with respect to the triplet ( c ~ , c ~ , T ) .  If 
one solves for y one obtains 4 = In (2) and the 
inequality (5( is established as a sufficient condition 
for finite-time stability. 

The following theorem provides the LMI's required 
to design a closed-loop finite-time stable system. 

Theorem 2 The closed-loop system (4) is finite- 
time stable, with respect to the triplet (c1, c2, T )  if 
there is a feasible matrix solution K to  the LMI's 

Ai+AT+BiK+K Bj < -In - I ,  i = 1, ... N ; (Sf) 
Proof: 
The proof follows the standard procedure, see ref- 
erence [l], for polytopic uncertainties, i.e. the in- 
equalities in (6) are each multiplied by ai and 
summed. 

It should be noted that design with static out- 
put feedback is also possible using theorem 2, if 
u(t) = Ky(t) ,  y ( t )  = Cx( t )  and C is a known ma- 
trix. In this case one simply replaces K in (6) by 
KC. The inequalities remain LMI's in the matrix 
variable K .  The LMI problem may be solved with 
existing software, e.g. MATLAB LMI Toolbox [3]. 

3 A Numerical Example 

Let us consider the following linear time varying 
polytopic system 

?(t) = (criAi+cxzAz)~(t)+(aiBi +azB2)~(t)  (7) 

where, in MATLAB notation 

A I = [ O  1 0; 0 0 1; 1 0 0 1 ,  

A z = - [  0 -1 0;  0 0 -1; 1 1 1 1 ,  

B1= [ 0;  0; 1 ] ,Bz = -B1. 

To explore the range of possible triplets (c1, c2, T )  
for this example we consider the following general- 
ized eigenvalue problem [l]. 

(8) 
min y 

A~ + AT + B ~ K  + K ~ B ~  < i = i , 2  

obtaining the following values Topt = 1.0629 and 
Kept = [ -1 -0.5 -0.5 1. The value of TOpt 
give us a barrier of feasibility in the sense that we 
cannot have values of c1, c2 and T such that 

(9) 

A possible triple of values which satisfies equation 
(9) can be, for example c1 = 1, c2 = 2, T = i, giv- 

ing a value of In (2) = 2.7726. Note that with 
the longer interval, T = 1, inequality (9) is satisfied 
and theorem 2 cannot be used to  finite-time stabi- 
lized the closed-loop system. Note also that while 
each pair of systems (AI ,  B1) and (Aa, Bz) is con- 
trollable, there does not exist any fixed K which 
simultaneously stabilized both systems. 
In reference [4] a more practical finite-time stabil- 
ity design problem is considered which can also be 
solved by theorem 2. 
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