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Abstract 

This paper deals with the control of polynomial non- 
linear systems which are affine in the control. We 
use Bernstein polynomials and Polytopic Linear Differ- 
ential Inclusion (PLDI) to design gain-scheduled con- 
trollers using a guaranteed cost framework. 

1 Introduction 

One popular method of dealing with nonlinear systems 
is to use linear robust control methodologies. In such 
approach, the nonlinearities are assumed to be uncer- 
tain parameters. If the nonlinearities appear in a spe- 
cial form, the nonlinear system is a Polytopic Linear 
Differential Inclusion. However, approximating a non- 
linear system as a PLDI usually requires over-bounding 
the nonlinearities with sector bounds. This could result 
in potentially severe conservatism, since there are many 
trajectories of the PLDI which are not trajectories of 
the nonlinear system, in addition to the conservatism 
introduced due to using a single quadratic Lyapunov 
function. Fortunately, the first type of conservatism 
can be overcome for a special class of nonlinear sys- 
tems as done in this paper. 

This paper is organized as follows: a brief introduction 
to PLDIs is presented in section 2 along with a dis- 
cussion of Bernstein polynomials and their properties. 
In section 3, stability conditions for PLDIs with gain- 
scheduled state feedback is presented followed by the 
guaranteed-cost LQ design. In section 4, we present, a 
numerical example and our conclusions are presented 
in section 5. 

2 PLDIs 

A PLDI can be written as, j. = A(t,z)z where A(t ,z)  
is given by: 

r 

A(t ,  z) = ai(t, z)Ai (1) 
i = l  
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and where { A I , . . .  ,AT} are known matrices 
and L Y ~ ,  . . . , L Y ~  are positive scalars which satisfy 
E:='=, cui(t, z) = 1. Using global linearization [l], 
we can use PLDIs to study properties of nonlinear 
time varying systems. In fact, consider the system, 
i = f ( t , z ,u )  and let the Jacobian of the system 
matrix A(t , z )  = lie in the convex hull defined in 
(l), then every trajectory of the nonlinear system is 
also a trajectory of the LDI defined by fl (See [l] for 
more details). 

2.1 Bernstein Polynomials 
Bernstein polynomials of degree n are defined as: 

for i = 1,. . . n  and where 

n! 

Note that there are n + 1 nth-order Bernstein poly- 
nomials and that we set Bi,,, = 0 if i < 0 or i > n. 
Bernstein polynomials are given recursively by 

&,,,(IC) = (1 - Z ) B k , n - - l ( Z )  + Z B k - - l , n - - l ( Z )  (2) 

The important property of Bernstein polynomials 
which makes them useful in the context of PLDIs is 
the fact that they are all non-negative over the inter- 
val [0,1], and one can show that Cy==oBi,n(z) = 1, 
i.e., they form a partition of unity. Most importantly, 
Bernstein polynomials of order n form a basis for poly- 
nomials of degree less than or equal to n. Although we 
limit our discussion to univariate Bernstein polynomi- 
als, the results presented can be extended to multivari- 
ate Bernstein Polynomials with minor modifications. 

Our control approach is based on normalizing the states 
to the closed interval [0,1], and then writing the non- 
linear system as a convex combination of linear sys- 
tems with Bernstein polynomials being the coefficients 
of these convex combinations. We can then use LMI 
methods to design gain-scheduling controllers for the 
nonlinear system. The overall controller for the original 
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nonlinear system is obtained by aggregating the linear 
parts. Stability conditions for these systems were first 
given in [6] in the context of model-based fuzzy systems 
and later relaxed and transformed into Linear Matrix 
Inequalities which are efficiently solvable using interior- 
point convex optimization methods [l ,  51. While the 
approach of the authors in [7] is based on approxima- 
tion of the nonlinear system as a fuzzy blending of lo- 
cal linear models, the representation o€ the polynomial 
nonlinear systems as convex combination of linear mod- 
els is exact. The techniques used for guaranteed-cost 
performance are based on [4]. 

3 LMI-Based Designs 

As mentioned earlier, let 

X = f(s) + g(z)u = A(x)x + g(s)u 

where all entries of A(z )  and B(s)  are polynomials. 
Furthermore, we assume that the states components 
are already normalized to the closed interval [OJ]. We 
first write (3) as 

r 

(3) 
i=l 

where ai(.) > 0 are Bernstein polynomials, and 
Eh, ai(.) = 1. The following structure is chosen for 
the gain-scheduled controller: 

T 

(4) 
j=1 

We then obtain the following closed-loop system: 
r r  

3.1 Stability 
Stability conditions are given in the following theorem. 

Theorem 1 [7]:The closed-loop system (5) is  globally 
asymptotically stable, i f  the pairs (Ai, Bi) are stabiliz- 
able , and there exist a common positive-definite matrix  
P which satisfies: 

(A i -B iKi )TP+P(Ai -B iKi )  < 0 i = l , . . . , r  
G ; P + P G ~ ~  < o j < i s ~  

P > O  (6) 

where Gij is defined as Gij = Ai - BiKj + Aj - BjKi. 

Remark 1 If Bi = B for all values of i, the second 

Pre-multiplying and post-multiplying both sides of the 
inequalities in (6)  by P-l and using the following 
change of variables 

Y = P-l;  X i  = KiY 

we obtain the following LMIs [4]: 

YAF + AiY - BiXi - XTBF < 0 

Y (A i  + + (Ai + Aj)Y - Mij - MZ < 0 

Y > O  
i = l , . . . 7 r ;  j < i 5 r 

where Mij is defined as: 

Mij = BiXj + BjXi (7) 
The feasibility of the above LMIs guarantees stability, 
but in most practical problems, stability is just a pri- 
mary goal and performance is also usually required. 
Next, we develop a guaranteed-cost framework for the 
design of nonlinear controllers [4]. 

3.2 Guaranteed-Cost Design 
Consider the problem of minimizing the quadratic per- 
formance index: 

J = E,, 1 (x(t)TQx(t) + u(t)TRu(t))dt (8) 

subject to : The PLDI in (3). It was shown in [4] 
that this problem can be transformed into the following 
optimization problem: 
Min t r (P)  
Subject to: 

CO 

T 

(Ai - BiKi)TP + P(Ai - BiKi) + Q + K’RKi < 0 
i= 1 

r 

G:P + PGij + Q + K’RKi < 0 
i=l 

i = l , . . . 7 r  j < i 5 r 

where Mij is the same as in (7). Using the change 
of variables in (7) and the Schur Complement lemma 
[17 21, the inequalities above can be transformed into 
the following LMIs: 

Ni yQl/z XTR1I2 1 . . .  XTR1I2 
Q’j’Y - I n x n  0 
R1l2X1 0 - I n Z x m  . . .  

R1I2 X r  0 0 . . .  - Imxm 
oij YQ1/2 XTR1/2 . . .  XTRII2 

Q112Y - I n x n  0 ‘ . .  
R1I2X1 0 - I m x m  . . .  

0 
Y > O  

set of inequalities in terms of Gij are redundant. 
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5 Conclusions 

To obtain the least possible upper-bound using a 
quadratic Lyapunov function, we have to solve the 
following optimization problem 

Min tr(Y-’)  
Subject To: LMIs in(9) 
This is a convex optimization problem which can be 
solved in polynomial time [5] using any of the available 
LMI toolboxes. To make it possible to use Matlab’s 
LMI Toolbox, we introduce an artificial variable 2, 
which is an upper bound on Y- l ,  and minimize t r ( 2 )  
instead, i.e, we recast the problem in the following form 

Min t r ( 2 )  
Subject To LMIs in(9), and 

[ I,”,, ] > O 

If the above LMIs are feasible, we can calculate the 
controller gains as Ki = XiY-’ The global controller 
can then be obtained as in (4). 

4 Numerical Example 

Consider the following third-order nonlinear system: 

X = A(.). +Bu;  U = - - I ~ ( x ) z  

1 [ o  0 0 

= [ !J (12) 

-22: -.: - 2(21 + 1 + 2%) + 2 2  0 
-9 -2.752: + 2x1 - 0.722 - 3 -1 A(x )  = 

Since the entries in the A ( z )  are all polynomials of 
degree at most 2, we use the following basis: 

1 1 1 1 
2 { -& 5 1  (1 - X I ) ,  s(1 -d2, &, m(1 -m) ,  2(1 -.2)2) 

Since B is a constant vector, there are only six LMIs 
which need to be solved. By solving the corresponding 
optimization problem discussed in the previous section, 
we obtain values for {Ki}fz1. After obtaining values 
for controller gains, the control action is computed us- 
ing (4). Simulation results will be shown at  the presen- 
tation. 

In this paper we developed a guaranteed-cost frame- 
work for designing controllers for a class of polynomial 
nonlinear systems. Using a Bernstein polynomial ex- 
pansion the nonlinear plant was represented as a PLDI. 
Gain-scheduling type controllers were designed using 
LMI based optimization methods which would mini- 
mize an upper bound on a quadratic performance in- 
dex. The results can be extended to the case where 
the entries of the A ( z )  matrix are multivariate poly- 
nomials using the multivariate expansion of Bernstein 
polynomials. The proposed method suffers from poten- 
tially severe conservatism due to the choice of a single 
quadratic Lyapunov function and to the requirement 
that all state variables are normalized to the [0,1] in- 
terval. 
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