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Abstract— In this paper we analyze model-based networked
control systems for a discrete-time nonlinear plant model,
operating in the presence of deterministic dropout of state
observations. The dropout is modeled using communication
network dynamics, and sufficient conditions for finite-time
stability are provided. In a companion paper we model the
dropout as a stochastic sequence.

I. INTRODUCTION

In several recent works, the problem of networked control
systems (NCS) has been posed and partially investigated [2],
[3], [4], [7], [8]. This new problem deals with the possibility
of controlling a system remotely via a communication
network and as such, instantaneous and perfect signals
between controller and plant are not achievable.

In [5] a model for the networked control of linear time
invariant systems was proposed. The network is modeled as
a sampler placed between the plant and sensors on one side,
and the controller on the other side of the network. Utilizing
an approximate model of the process at the controller’s side,
the controller can maintain stability while receiving only
periodic updates of the actual state of the plant. Whenever
a new update is received, the model plant is initialized with
the new information. This idea was utilized in [1], where
the system evolved in discrete-time, and state updates were
either received or dropped at each sample due to the effect
of the network. The characterization of such a dropout is
achieved through the use of a dropping sequence that takes
on values of 0 or 1 depending on whether a sample was
lost or received, respectively. Such dropping sequence is
modeled using dynamics a network. Recently in [6], the
initial model for a continuous-time plant and a network
modeled with a fixed rate sampler was extended to bounded
yet random variable sample times driven by a Markov chain.

In this paper, we present an extension of the discrete-time
systems in [1] into a nonlinear setting, i.e. our plant and
the model used for state estimation are both nonlinear. We
utilize the same model of packets being dropped according
to dropping sequence, and obtain sufficient conditions to
guarantee finite-time stability of the closed-loop system.

The paper is organized as follows: In Section II, we
reformulate the model-based networked control problem
in the nonlinear setting. Section III describe a model for
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deterministic packet dropout in which the network dynamics
are included in the model through the dropping sequence.
We move in section IV to describe the concept of finite-
time stability and extended finite-time stability. With the
described framework in section V we proceed to develop
the analysis tool. Finally in Section VI we present some
examples to illustrate our results, and our conclusion in
section VII.

A companion paper titled “Model-based Networked Con-
trol for Finite-Time Stability of Nonlinear Systems: The
Stochastic Case” has also been submitted to the conference
and deals with the same problem using stochastic models.
The first two sections of the current paper and the com-
panion paper are identical in order to make them as self-
contained as possible.

II. PROBLEM FORMULATION

In [1] a discrete-time model-based control with observa-
tion dropouts is proposed for linear discrete-time systems.
Our objective in this paper is to propose a similar framework
in the case of nonlinear systems, and to study the stability
of the closed-loop system. As depicted in Figure 1, discrete-
time model-based control is comprised of a plant with the
network residing between the sensors of the plant and the
actuators.

xk+1 = f(xk) + g(xk)uk

x̂k+1 = f̂(x̂k) + g(x̂k)uk

Sensor

x̂k

xk

x̂k := xk

Network

Controller

uk = K(x̂k)

Fig. 1. Model-Based NCS

The network is modeled as a dropping sequence θk,
where a measurement is dropped if θk = 0, and a mea-
surement is received when θk = 1. Due to our inability to
receive an update of the plant’s state at each discrete instant
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of time, we use an inexact model plant on the controllers
side that provides us with the missing measurement. Such
a model is given by

x̂k+1 = f̂(x̂k) + ĝ(x̂k)uk. (1)

In order to carry out the analysis, we define the estimation
error as ek = xk − x̂k, and augment the state vector with
ek so that the closed-loop state vector is given by zk =(
xT

k ; eT
k

)T
. The closed-loop system evolves according to

zk+1 =

⎛
⎝ f(xk)

(f(xk) − f̂(xk)) + ..

(1 − θk)((f̂(xk) − f̂(x̂k)))

⎞
⎠

+

⎛
⎝ g(xk)K(x̂k)

(g(xk) − ĝ(xk))K(x̂k) + ..
(1 − θk)(ĝ(xk) − ĝ(x̂k))K(x̂k)

⎞
⎠ .(2)

In the above model θk ∈ {0, 1} is a dropping sequence that
indicates the reception (θk = 1) or the loss (θk=0) of the
packet containing the state measurement xk. If a packet is
received, it is used as an initial condition for the next time
step in the model, otherwise the previous state of the model
is used. We then classify the NCS errors as follows:

(I). Model structure errors

ef1(xk) = f(xk) − f̂(xk) (3)

eg1(xk) = g(xk) − ĝ(xk). (4)

These are the errors between the plant and the model
evaluated at the plant’s state, and are therefore depen-
dent on the system’s structure.

(II). State dependent errors

ef2(xk, x̂k) = f̂(xk) − f̂(x̂k) (5)

eg2(xk, x̂k) = ĝ(xk) − ĝ(x̂k). (6)

These represent the errors between the model evaluated
at the plant’s state and at its own state, i.e. the error
introduced by the difference in the states.

(III). Structure and state dependent errors

ef3(xk, x̂k) = f(xk) − f̂(x̂k) (7)

eg3(xk, x̂k) = g(xk) − ĝ(x̂k), (8)

which include both model structure and state depen-
dent errors.

With the new notation, the system (2) becomes

zk+1 =

⎛
⎝ f(xk) + g(xk)K(x̂k)

ef1(xk) + eg1(xk)K(x̂k) + (1 − θk)..
(ef2(xk, x̂k) + eg2(xk, x̂k)K(x̂k))

⎞
⎠

Based on the value of θk we have two possible situations:

1. for θk = 1 the system will be

zk+1 =

(
f(xk) + g(xk)K(x̂k)

ef1(xk) + eg1(xk)K(x̂k)

)
(9)

2. for θk = 0

zk+1 =

(
f(xk) + g(xk)K(x̂k)

ef3(xk, x̂k) + eg3(xk, x̂k)K(x̂k)

)
(10)

For the remainder of this paper we use the following
compact form to represent the system above, which also
highlights the fact that θk represents packet dropouts,

zk+1 = H1(zk) + H2(zk)(1 − θk), k ≥ 0 (11)

with

H1(zk) = F1(zk) + G1(zk)K(x̂) (12)

H2(zk) = F2(zk) + G2(zk)K(x̂)

F1(zk) =

(
f(xk)

ef1(xk)

)
, F2(zk) =

(
0

ef2(xk, x̂k)

)

G1(zk) =

(
g(xk)

eg1(xk)

)
, G2(zk) =

(
0

eg2(xk, x̂k)

)
While the control law has no access to the plant’s state,

we assume in the analysis of the global system full-state
availability (i.e. both xk and x̂k available). Moreover, we
assume that the control law uk = K(x̂k) stabilizes the
model plant and in the case of full-state availability, it also
stabilizes the plant.

Next we define a particular class of NCS for which we
characterize the accuracy of the model in representing the
plant’s dynamics, and describe how the model discrepancy
affects the NCS structure.

Definition 1: A model-based NCS of the form
(11), belongs to a class CB−NCS with the bounds
(Bf , Bg, Befi, Begi;Bhi

), i = 1, 2 if for all k ∈ N and for
all xk ∈ S ⊂ IRn, the system structure and error norms are
bounded as follows

||f(xk)|| ≤ Bf , ||g(xk)u(x̂k)|| ≤ Bg(x̂k) (13)

||ef1(xk)|| ≤ Bef1, ||ef2(xk, x̂k)|| ≤ Bef2(x̂k)

||eg1(xk)u(x̂k)|| ≤ Beg1(x̂k)

||eg2(xk, x̂k)u(x̂k)|| ≤ Beg2(x̂k)

where Bf , Bef1 are constant bounds and
Bg(x̂k), Bef2(x̂k), Beg1(x̂k), Beg2(x̂k) are bounds
that depend on the model state. Such NCS are called
bounded model-based NCS (B-MB-NCS).

The above definition describes the class of NCS, for
which it is possible to define bounds on the plant and the
NCS errors, and where such bounds depend only on the
model’s state.

Next we state a lemma that describes properties of class
CB−NCS . In particular the lemma describes how bounds
on the norm of the B-MB-NCS errors imply bounds on the
norm of the NCS dynamics.

Lemma 1: Consider the NCS (11) and assume the system
belongs to class CB−NCS . Then the following bounds hold
on the norm of the NCS dynamics for i, j = {1, 2}, j �= i,
k ∈ N and for all xk ∈ S ⊂ IRn,

HT
i Hj ≤ BHi,j

(x̂k), HT
i Hi ≤ BHi

(x̂k) (14)
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where the bounds on the vector functions are related to the
bounds on the errors as follows:

BH1(x̂k) = (Bf + Bg(x̂k)) + (Bef1 + Beg1(x̂k))

+2(BfBg(x̂k)) + 2(Bef1Beg1(x̂k))

BH1,2(x̂k) = (Bef1Bef2(x̂k) + Beg1(x̂k)BT
eg2(x̂k))

+BfBg(x̂k) + (Bef1Beg2(x̂k)

+Beg1(x̂k)BT
ef2(x̂k))

BH2(x̂k) = (Bef2 + Beg2(x̂k)) + 2((Bef2Beg2(x̂k))
The proof of the above lemma can be found in [13].

Lemma 2: Consider the NCS (11), belonging to class
CB−NCS(Bf , Bg, Befi, Begi;Bhi

), i = 1, 2 then for all
xk ∈ S ⊂ IRn,∀k ∈ N

||xk|| ≤ Bx(x̂) ||ek|| ≤ Be(x̂), ||zk|| ≤ Bz(x̂) (15)

where

Bx(x̂) = Bf + Bg(x̂k) (16)

Be(x̂) = Bef1 + Beg1(x̂k) + Bef2(x̂k) + Beg2(x̂k)

Bz(x̂) = Bx(x̂) + Be(x̂)
Proof: The first two inequalities just follow from

(2), (13). The second part trivially follows from ||zk|| =
(||xk|| + ||ek||) ≤ (Bx(x̂) + Be(x̂)) = Bz(x̂)

III. NETWORKED CONTROL SYSTEMS AND NETWORKS

Several studies have been conducted in modeling and
controlling Networked-Control Systems (NCS),[5],[1],[2],
mostly to study the stability of a system whose control loop
has been closed across a network.

The introduction of a network in a control loop brings
about problems such as packet drops, delays, and so on.
These issues have been analyzed individually although some
studies have combined the effects of sampling and delay [5].
However, to the best of our knowledge, the network model
itself has not yet been directly incorporated into the NCS
model, but only through the effects that arise as a result of
the network’s conditions.

This is the missing link between Networked-Control
System and Network-Control. Models of networks have
been developed in Network-Control to study delays and
packet drops caused by congestion. Therefore, there is a
gap between the network dynamics, covered in Network-
Control, and the effects that these dynamics have on a
control system, which Networked-Control Systems focuses
on. We next provide a complete deterministic model of
networked control system including the network dynamics
and their effect on the packet dropping.

A. Deterministic Model for Packet Dropout

We aim to model the packet dropout by considering the
network dynamics. In particular we are interested in the
network section that includes the path that a packet is going
to follow. This path is composed of a number of nl links,
and with each link is associated an actual traffic, depending

on the number and rate of sources that are accessing the
path, and on the link physical capacity.

We want to study how the loss of packets affects the
stability of the overall system by including the network
dynamics in the model. In particular this will allow us to
explicitly relate the stability of the system to the capacity
of the links involved in the path used by the system, and to
the rate of the sources that are accessing such a path. This
relation gives us the possibility of eventually designing for
the stability of the system by controlling the rate of the
sources accessing the path.

Let (L, S) be a network in which each source si has an
associated rate ri(k) that is a function of time at which
it sends packets trough a set Li ⊂ L of links. So through
every link lj a total rate that is the sum of all the rates of ns

sources is given by Rj(k) =
∑ns

i=1 ri(k). Moreover, each
link will have a capacity function proportional to the total
rate that will indicate the level of occupation of the link
Gj(k) = KlRj(k), j = 1, . . . , nl. A link has a limiting
capacity beyond which it will drop packets. In particular
there is a critical level of leftover capacity ci(k) above
which the link will accommodate packets, and below which
it will start dropping them. The packet drop will be modeled
by the binary value variable θk, as discussed earlier.

We have at every instant of time k

θk =

nl∏
j=1

[
sign(ci − Gj(k)) + 1

2

]
(17)

where the function sign : IR → {−1, 1} is defined as

sign(a) =
{

1 a ≥ 0
−1 a < 0 .

The complementary variable ϕk = 1 − θk can then be
obtained as follows

ϕk =

⎡
⎣1 −

nl∏
j=1

[
sign(cj(k) − Gj(k)) + 1

2

]⎤
⎦ . (18)

With the provided framework we are now able to study the
stability of the following dynamical nonlinear time varying
system

zk+1 = (F1(zk) + G1(zk)uk) + (F2(zk) + G2(zk)uk)⎡
⎣1 −

nl∏
j=1

[
sign(ci(k) − K

∑ns

j=1 ri(k)) + 1

2

]⎤
⎦

where Gj(k) represents the traffic in link j, and ri(k) are
the known sequence of rates for sources accessing the path.

This model of NCS is a discrete-time, time-varying
dynamical system that incorporates the system state zk, and
the network dynamics ci(k), rj(k). The network is therefore
an integral part of the overall system, therefore achieving
our goal.

IV. FINITE-TIME STABILITY

We focus on discrete-time dynamical systems described
by

xk+1 = f(xk), x ∈ IRn, x(0) = x0 (19)
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Where x is the system state, and f : IRn → IRn is a vector
function. For notational simplicity, we use xk = x(k). Also
from now on we will denote ||.|| ≡ ||.||22. We are interested
in studying the state trajectory of the system in a finite time
interval.

Definition 2: [9] The system (19) is finite-time stable
(FTS) with respect to the 4-tuple (α, β,N, ||.||), α ≤ β
if every trajectory xk starting in ||x0|| ≤ α satisfies the
bound ||xk|| ≤ β for all k = 1, . . . , N .

Next we present a new analysis result for FTS of non-
linear discrete-time systems. We consider three classes of
systems : a) systems for which the state trajectories always
increase in the norm, b) systems for which states always
decrease in the norm, and c) systems whose state trajectories
behavior’s is mixed.

The first step consists of exploring the state trajectories
using a discrete version of the continuous-time Bellman-
Gronwall inequality [12]. If the state trajectory is always
increasing (in the norm) during the time interval of interest,
then it is enough to verify that the state at the last time of the
interval does not exceed the bound. In the case where the
trajectory is always decreasing and it starts inside the bound,
the FTS is guaranteed. In the case of a mixed behavior, it
is necessary to explore if the trajectory is bounded at each
time step. In the next theorem we formulate the conditions
for finite-time stability of the system (19).

Theorem 1: The system (19) is finite-time stable with re-
spect to (α, β,N, ||.||), α ≤ β, if for a function V (xk, k) =
Vk ≥ 0 such that δ1||xk|| ≤ Vk ≤ δ2||xk||, where
δ1 > 0, δ2 > 0, γ = δ1β, γ0 = δ2α, V0 ≤ γ0 and
Sβ = {xk : ||xk|| ≤ β} we have ∀k = 0, . . . , N, ∀xk ∈ Sβ

∆Vk ≤ ρkVk, and one of the following three conditions
occur:

• Case 1: (ρk ≥ 0), γ
γ0

≥
∏N−1

i=0 (1 + ρi)
The value of ρk ≥ 0 implies that the bounds on the
increments of Vk are as a worse case always greater
than one, which is the case of monotonically increasing
functions.

• Case 2: (0 ≥ ρk > −1) No additional conditions are
required.
The condition 0 ≥ ρk > −1 restricts the bounds on
the increments of Vk to be always between zero and
one, which constrains the function to be monotonically
decreasing.

• Case 3: (ρk > −1), γ
γ0

≥ supk

∏k−1
i=0 (1 + ρi). The

case ρk > −1 contains the two previous cases, that is
the function Vk may be increasing and decreasing.
Proof: The proof is available in [13]

In order to allow more flexibility in our analysis we want
to extend the previous definition considering cases in which
the state norm may exceed the bound β, but only for a
finite number of consecutive steps, after which it needs to
contract again below the bound β. The rationale for this is
to consider for the deterministic case an equivalent concept
to the stochastic one, where the possibility of exceeding the
bound for some time is allowed. The proposed extension fits

many real situations such as the example of driving a car in
a tunnel, where we do not want to hit the tunnel walls, but
in case the car is robust enough, we may hit the walls for
short periods of time. Another example, may be to consider
hot object we need to grab, which even if the temperature
is high we can touch it for short time. Therefore we allow
a tolerance time within which we can support the object,
but after which we need to release it and eventually grab
it again. We formalize such a concept with the following
definition.

Definition 3: The nonlinear discrete-time system (19)
is Extended Finite-Time Stable (EFTS) with respect to
(α, β;N,No), if one of the following holds

(I) for some k ∈ [0, N ] either

{||xk|| < β : k ∈ [0, N ]| ||x0|| ≤ α} (20)

or
(II)

{∀j ∈ [0, N ] : ||xj || > β,⇒ min
j+1≤i≤j+No+1

||xi|| ≤ β}

where No < N is the number of consecutive steps the
system state is allowed to exceed the FT bound.

V. EXTENDED FINITE-TIME DETERMINISTIC STABILITY

ANALYSIS

We consider the deterministic MB-NCS, described in
section II

zk+1 = H1(zk) + H2(zk)ϕk, zk ∈ IR2n, k = 0, 1, . . . (21)

The dropping sequence ϕk = (1 − θk) ∈ {0, 1} is defined
as in section III.

The NCS described in equation (21) is a deterministic
system, and we are interested in investigating its stability
over a finite time in the event of packet dropping. In
the stochastic case, bounds may be exceeded with low
probability. A deterministic definition of EFTS, which also
allows bounds to be exceeded, but over limited intervals.

Definition 4: The NCS (21) is EFTDS with respect to
(αx, βx;αz, βz;N,No), if the following conditions hold

(I) the system is FTS with respect to (αx, βx, N), if no
packet dropping occurs

{zT
k zk < βz : k ∈ [0, N ]|zT

0 z0 ≤ αz} (22)

(II) for ϕk = 1, and some k ∈ [0, N ] either

{zT
k zk < βz : k ∈ [0, N ]|zT

0 z0 ≤ αz} (23)

or

{∀j ∈ [0, N ] : zT
j zj > βz (24)

⇒ min
j+1≤i≤j+No+1

xT
i xi ≤ βx}

where No < N is the number of consecutive steps the
system state is allowed to exceed the FT bound due to
packet dropping.
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In particular, FTS for NCS is redefined so that if packet
dropping occurs, the system state may exceed the bound
βx for a fixed finite number of consecutive steps No. Note
that the above definition requires the knowledge of future
states to ensure FTS at each step. We will also redefine

βz

βx

αz

αx

kNj + Noj

‖ xk ‖

‖ zk ‖

0

Fig. 2. Extended definition of FTDS for NCS: the global state norm
||zk|| may exceed the bound βz and ||xk|| the bound βx as long as the
plant state norm ||xk|| contracts in a finite number of steps No, back to
βx.

quadratic FTDS in case it is desired to bound a given
quadratic function of the state.

Definition 5: The NCS (21) is quadratically EFTS with
respect to (γx, γx0; γz, γz0;N,No,M), if for the choice
of quadratic Lyapunov functions Vz(zk, k) = zT

k M(k)zk,
Vx(xk, k) = xT

k m1(k)xk and Vx̂(x̂k, k) = x̂T
k m4(k)x̂k, in

which M(k) = MT (k) is a 2n × 2n time-varying matrix,
with m1(k) > 0, m4(k) > 0, we have

(I.) for ϕk = 0

{Vz(zk, k) < γz : k ∈ [0, N ]|Vz(z0, 0) ≤ γz0} (25)

(II.) for ϕk = 1 either

{Vz(zk, k) < γz : k ∈ [0, N ]|Vz(z0, 0) ≤ γz0} (26)

or

{∀j ∈ [0, N ] : Vz(zj , j) > γz

⇒ min
j+1≤i≤j+No+1

Vx(xi, i) ≤ γx}

Theorem 2: Every NCS that is quadratically EFTS with
respect to the parameters (γx, γx0; γz, γz0;N,No,M), is
also EFTS with respect to (αx, βx;αz, βz;N,No).
Proof.

The proof easily follows by considering the fact that
δ1||zk||

2 ≤ Vz(zk, k) ≤ δ2||zk||
2, δ1(k) = λmin{M(k)},

δ2(k) = λmax{M(k)} are the minimum and maximum
eigenvalues of M(k), respectively.

In this section, we consider sufficient conditions that will
guarantee FTDS for the NCS. In the new setting, if the NCS
state exceeds the bound specified at time j, then, in order to
predict the future values of the state, it is required to have
an estimate of the plant state for the successive No + 1
steps. This is presented in the following theorem by using
the model to predict future states.

the sets of bounded states are denoted by Sγa
= {ak :

Va(ak, k) ≤ γa}, for a = z, x, x̂.

Theorem 3: Consider the class CB−NCS NCS (21), and
the state prediction using the model

x̂k+(j+1) = f̂(x̂k+j) + ĝ(x̂k+j)uk+j , (27)

k + 1 ≤ j ≤ k + 1 + No

and assume for all xk ∈ Sγx
and k = 1, . . . , N

∆Vz ≤ ∆VBz
= BH2(x̂k)ϕ2

k + (28)

2(BH1,2(x̂k))ϕk + BH1(x̂k) − x̂T
k M(k)x̂k

∆Vx ≤ ∆VBx
= BH1(x̂k) − λmin{M}Bz(x̂)

then either

[ρkVz(zk, k) − ∆VBz
(zk, k))] ≥ 0 (29)

γz

γz0
≥ sup

0≤k≤N

k−1∏
j=0

(1 + ρj)

or

[ρkVz(zk, k) − ∆VBz
(zk, k))] < 0

min
k+1≤i≤k+No+1

[ρ
′

iVx(x̂i, i) − ∆VBx
(x̂i, i)] > 0(30)

βx̂

αx̂

≥ sup
0≤k≤N

k−1∏
j=0

(1 + ρ
′

j) (31)

and finally

Be(x̂k) + βx̂ ≤ βx, ∀x̂k ∈ Sγx̂
, (32)

then the NCS (21) is FTDS with respect to
(αx, βx;αz, βz;N,No)

Proof.
From condition (29) and theorem 1, and considering the

the fact that the NCS belongs to class CB−NCS , we can
show the FTDS for the NCS. Let us study the case in
which [ρkVz(zk, k) − ∆VBz

(zk, k)] ≤ 0, then inequality
(30) reduces to

min
j+1≤i≤j+No+1

[ρkVx(x̂i, i) − ∆VBx
(x̂i, i))] ≥ 0,

from which it follows that there exists a j+1 ≤ i ≤ No +1
for which [ρiV (x̂i, i)−∆V (x̂i, i)] ≥ 0, that combined with
condition (30) with theorem 1, implies FTS for the model
state x̂ with respect to (αx̂, βx̂, 1). Also since ||xk|| =
||xk − x̂k + x̂k|| ≤ ||ek|| + ||x̂k|| ≤ Be(xk) + ||xk||, then
considering the condition (32), and the FTS of x̂k, from
which it follows ||xk|| ≤ βx for at least one k ∈ [j + 1 ≤
i ≤ No + 1] and moreover FTDS for the NCS.

VI. EXAMPLES

Consider the discrete-time Brockett integrator, we investi-
gate in a deterministic setting how packets losses, affect the
closed-loop EFTS of the system. Consider again the discrete
version of the Brockett integrator [14] and the model

x̂1(k + 1) = −23x̂1(k) − 17u1(k)

x̂2(k + 1) = −19x̂2(k) + 3.33u2(k) (33)

x̂3(k + 1) = −5x̂3(k) − 8(x̂1(k)u2(k) − 7x̂2(k)u1(k))
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We study EFTS with respect to (αz = 1, βz = 3, αx =
0.6, βx = 1.5, N = 10, No = 2). Let us use the

controller u(k) = −

[
e
−ak

0

0 e
−bk

]
x(k), with parameters

a = 1.3, b = 0.7. Then the conditions of theorem 3
are satisfied if full information is available, i.e. ϕk =
1, ∀k = 0, . . . 10. In order to simulate the system, we
consider the path used to the NCS composed of three links
l1, l2, l3, each with limit capacity ci(k). The links are used
by five sources s1, . . . , s5 as follows l1 → s1, s4, l2 →
s1, s3, l3 → s2, s3, s5 meanwhile the sources send at
the rates r1(k) = 1(sin(k) + 1), r2(k) = 3(cos(k) +
1), r3(k) = 1.7exp−k, r4(k) = 8(cos(k) + 1), r5(k) =
9exp−k, from which we can calculate the global rates at
each link as G1(k) = r1(k) + r4(k), G2(k) = r1(k) +
r3(k), G3(k) = r5(k) + r2(k) + r3(k).

We study the closed-loop behavior of the NCS as the limit
rate of the link, and therefore the amount of packets dropped
vary. Starting from initial conditions xi(0) = x̂i(0) =
0.3, i = 1, 2, 3, we first consider a fixe limit capacity
ci = c = 17 that will lead to a dropping sequence {ϕk} of
all zeros, that is all the packets are received (and therefore a
receiving sequence {θk} of all ones). Figure (3) shows the
evolution of the system state over time. If we lower the limit
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Fig. 3. Brockett integrator controlled through the network with exponen-
tial controller with a1 = 1.3, a2 = 0.7, capacity c = 17.

capacity to c = 13 packets/second, the receiving sequence
becomes θ = [0 1 1 1 1 0 0 1 1 1 1 0 0 1 1], for which FTDS
conditions are still satisfied, as shown in Figure (4). For
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Fig. 4. Brockett integrator controlled through the network with exponen-
tial class (a) controller with a1 = 1.3, a2 = 0.7, static capacity c = 13

c = 1 we obtain a dropping sequence of all ones and the
state dynamics are depicted in Figure 5.

VII. CONCLUSIONS

We studied MB −NCS with a deterministic model for
the packet dropout. This model was realized by including
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Fig. 5. Brockett integrator controlled through the network with exponen-
tial class (a) controller with a1 = 1.3, a2 = 0.7, static capacity c = 1

the network in the NCS. This allowed us to obtain a
deterministic model for the packet dropping and therefore
for the complete NCS. The EFTS for such systems was
explored, and in particular redefined for the deterministic
NCS. This has allowed the system to possibly exceed the
specified bounds for a finite number of steps, which was
otherwise unacceptable under the classical FTS definition.
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