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Abstract 
In this paper we show how the stability of a LA- 

PART neural network can be deduced as a result of 
a general theorem on the input/output stability of 
nonlinear systems. This result gives conditions on 
how to choose certain parameters in the LAPART 
network in order to guarantee stability, which has 
implications on LAPART’s generalization properties 
and its noise robustness. 

1. Introduction 
The LAPART architecture [l] is a connection of 

two ART 1 modules connected via feedback and is 
used to learn input/output mappings or in learn- 
ing class representations and class-to-class inferences. 
Such neural networks have recently been used to 
identify and control nonlinear systems, by calling 
on their ability to approximate signals or systems 
arbitrarily closely [2]. Since the interconnection of 
dynamical systems via feedback causes non-trivial 
stability issues [3], we try in this paper to study 
the bounded-input-bounded-output stability of the 
LAPART network using general theorems on input- 
output stability [4]. Such stability concepts have im- 
plications in terms of the generalizations capabilities 
and the noise tolerance of the network, since if a small 
change in the input causes the output changes to be 
drastic, the network learning becomes highly suscep- 
tible to noise and unforeseen input changes. Note 
that the results of this paper apply to more general 
classes of neural networks (any class which has feed- 
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back) [5 ,  61, or to the interconnection of a neural net- 
work with a dynamical system in a feedback struc- 
ture. The issue of stability of neural networks when 
used in control applications has been brought to the 
forefront by surveys such as [7, 8, 9, 10, 21, and by 
researchers such as [ll, 12, 13, 14, 151. 

The paper starts in section 2 by reviewing the 
basic operation of the LAPART network. We then 
briefly review ideas from input/output stability in 
section 3. The stability of LAPART is then studied 
in section 4 and our conclusions are given in section 
5.  

2. The LAPART Network 
To introduce notation and support our discussion 

of the LAPART architecture, we briefly review the 
function of an ART 1 system [16]. An ART 1 net- 
work autonomously classifies binary input patterns 
and represents each class by a prototype or template 
binary pattern. Each template is formed through 
the ART 1 unsupervised learning process and repre- 
sented by a unique set of adaptive connections con- 
trolled by a classification node. 

A binary pattern X can be regarded as a string 
of numerical 1’s and 0’s. For any two binary pat- 
terns X and Y having the same length (number 
of 0-1 components), let X A Y denote the binary 
pattern that constitutes their componentwise mini- 
mum, where the minimum operation on components 
has the properties 0 A 0 = 0, 1 A 1- = 1, 0 A 1 = 
0 = 1 A 0 .  For a set S of binary patterns all hav- 
ing the same length, with S = { X I ,  X 2 ,  . . . , X N } ,  
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inter-ART module their classes by forming strong F k  -+ FF intercon- 
nec t ions. 
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I 
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To see how the LAPART network learns class-to- 
class inferences from example input pairs, we give a 
brief summary of its operation. We discuss the pro- 
cessing of a typical input pattern pair ( I A ,  IB) . Ini- 
tially, networks A and B are untrained ART 1 net- 
works, with their F2 nodes linked by weak F k  --+ 

Figure 1: LAPART Architecture 

let A S denote the minimum over the set, A S = 
X1 A X 2  A . . . A X N  (this is unambiguous, since the 
A operation is associative). Finally, let 1 1  X 1 1  denote 
the number of 1s in the binary pattern X . 

For each ART 1 input pattern, unsupervised 
learning occurs in two phases: (1) recognition of 
the input pattern as a member of some class, and 
(2) updating of the class template through synaptic 
learning. The process can be summarized as solving 
the combinatorial optimization problem stated as fol- 
lows: 

The solution, i , is the index of the F2 node F2,i 
that represents the class assigned to I ,  which has an 
associated ART 1 binary template pattern T” 

The LAPART network is based upon the cou- 
pling of two ART 1 networks, referred to as A 
and B .  The interconnects between these two sub- 
networks in a LAPART network force an interac- 
tion of their respective classifications of their inputs. 
This modifies their unsupervised learning properties 
to allow the learning of inferencing relationships be- 
tween their learned input pattern classes. The learn- 
ing takes place when the input nodes of the two 
ART 1 subnetworks are presented with a sequence 
of simultaneously-occurring input patterns I; and 
I; for subnetworks A and B ,  respectively. As A 
and B form class templates for their inputs, the 
LAPART network learns inference relations between 

- 
FF connections. There are two major cases to con- 
sider in describing the operation of a LAPART net- 
work when its two ART 1 subnetworks simultane- 
ously receive their input patterns IA and IB, re- 
spect ively. 

Case I :  New A-class. Network A forms a new 
class for its current input IA if it currently has no 
acceptable template for I A .  Then, a previously- 
uncommitted F$ node has its connections with the 
F t  layer recoded to have IA as an incidence pattern. 
Denote the new class by A i ,  where node F& is the 
corresponding classification node just selected. Fol- 
lowing a delay controlled by network A ,  network B 
is allowed to read its input, IB . This engages the un- 
supervised learning process in network B , and also 
the synaptic learning of a strong feedforward con- 
nection from node F& to the resonating FF node, 
F f j ,  say. The class Bj could be either an exist- 
ing class or a new class as in network A .  We say 
that the LAPART network has formed the associ- 
ation Ai ==+ B j ,  written as a logical implication 
between classes. We say this because the future pre- 
sentation of an input pair for which Ai is the resonat- 
ing class for the A input will result in the inference, 
through the strong Fei -+ FG connection, that 
class Bj is appropriate for the B input. 

Case 2: Existing A-class. This case occurs when 
network A already contains a class representation 
Ai that resonates with I A .  Then it also has a 
previously-learned class-to-class relation Ai ===+ Bj . 
Thus, Fi i  primes F;j through the strong Fgi --+ 
F$ connection. Network A simultaneously releases 
its inhibition of network B ’ S  input field. Network 
B then reads out the class Bj template over the 
F? layer, and simultaneously reads its input, 1,. 
The effect of this is to force network B to perform 
the vigilance pattern-matching test using the tem- 
plate pattern Tj” instead of one that it would have 

1357 



selected through the ART 1 winner-take-all compe- 
tition in layer F . .  Even though it does not control 
selection of a class for its input during this A-class- 
to- B -class inferencing, however, network B still has 
control of its vigilance node. As a consequence, net- 
work B can either confirm or disconfirm the inferred 
class for its input. 

If the pattern match between the inferred class 
template TA and the input pattern IB  is not ac- 
ceptable, 

a lateral reset occurs in network B .  Through the 
fixed, strong connection V I G B  4 V I G A  between 
the two vigilance nodes, network A is subsequently 
forced to also undergo a reset. This forces the choice 
of a new network A class to represent its input. This 
is followed by either a re-enactment of the Case 2 sce- 
nario or by Case 1, the learning of a new inferencing 
connection from a new A class. The Case 2 scenario 
can be re-enacted several times, ending with either 
Case 1 or, alternatively, the inference of an accept- 
able B class for input IB . 

Following completion of either a Case 1 scenario, 
or a Case 2 scenario ending in acceptance of the in- 
ferred template, both the IA  and IB  class templates 
are updated in the usual ART 1 fashion. The re- 
sult of this process, operating upon a sequence of 
input pairs, is the formation of classes and infer- 
ence relationships by which network A recognizes 
an input pattern and then infers a class, or template, 
for network B 's input pattern. In summary, a LA- 
PART network learns class representations and class- 
to-class inferences for for its input pairs by making 
and testing trial inferences, using a process similar 
to the ART 1 hypothesis-testing process for unsu- 
pervised classification.. 

The question then arises on how sensitive is the 
network to noise corrupted input/output patterns. 
In other words, having learned a class-to-class infer- 
ence under normal circumstances, will it have a dras- 
tically different behavior if the input pattern changes 
by a small amount? In the next section, we discuss 
general concepts from input/output stability in order 
to answer these questions in section 4. 

3. Input/Output Stability 
Let us define the graph of a system with input 

U and output y as the ordered pair G = ( U ,  y), and 
the inverse graph as GI = (y,u). If we connect 2 
systems in the standard feedback connection shown 
in Figure 2, and the result is a dynamical system (i.e. 
no algebraic loop), we say that we have a well-defined 
connection. We say that a system is stable if small 
input (in an appropriate sense) causes a small output. 
We also define the truncated signal x, as the signal 
equal to x ( t ) ; V t  5 7 and zero elsewhere. In order 
to state the theorem, we define Sz = z - z,,,inal as 
the difference between the signal 2 and its nominal 
value. This will allow us to state our result in terms 
of the nominal behavior of the LAPART network and 
changes therein. 

Theorem 1 [4] A well-defined interconnection is 
stable i f  and only if there exists a gain function y 
which gives a bound on  the norm of truncated signals 
in the inverse graph of as a function of the trun- 
cated distance from the signals to the graph of C1, 
i.e. 

E Gi  ==+ l l ~ c 7 1 1  I y ( d , ( x , G i ) ) ; V ~  (1) 

where d,(z, G I )  = inf,EG1 
Note that this result applies in both continuous- 
time and discrete-time, i.e. x ( t )  could denote a 
continuous-time signal or a sequence in discrete-time. 

4. The Stability of LAPART 
The stability of LAPART will be deduced from 

Theorem 1 above. Let us consider the following sig- 
nals in the LAPART block diagram 2, 

- Z ) ~ ~ I .  

U2 = d2 + Y 1  

and 

U 1  = d l  + y2 

= [2]+[v:] 
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Then, 

I 

A 

I 

dl + y2 
G A = [  y1 1 ;  G L = [  d2 y2 + Yl ] (4) 

Theorem 2 If ‘whenever 

- ~ I A  
bv ,  - bVA 

SIB 
SF; - CSFk 

bV, and bF; 

1 
is small, leads to 

are small, the L A P A R T  is B I B O  stable. 

(5) 

The theorem basically states conditions under 
which small perturbations in the input patterns IA 
do not cause large perturbations in internal LAPART 
signals. This has applications in trying to establish 
generalization properties and noise tolerances in the 
network structure. Moreover, if one uses the follow- 
ing interpretation of stability: an input/output map- 
ping is BIBO stable if it is continuous, i.e. i f  for 
any given 2 output signals which are close (in some 
suitable norm), one can find 2 corresponding input 
signals which cause the output signals to be close., 
then the theorem may be re-interpreted to mean that 
a stable LAPART learns continuous input/output 
mappings. 

5. Conclusions 
In this paper, we have introduced a general re- 

sult from stability theory to study the BIBO stability 
of the LAPART network. Note that the same result 
may be used in many feedback neural networks struc- 
tures, both in continuous and discrete-times. We are 
currently investigating the applications of such con- 
cept to the selection of different parameters in the 
ART1 modules. 
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