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TABLE II 
VALUES OF g k ,  G t  , AND Hk FOR EXAMPLE 2 

~~~ ~ ~~~ 

1 -1 1.8 0.5556 
2 0.2 1.6 0.2 
3 0.45 1.15 0.0355 
4 0.4 0.75 0.0008 
5 0.2875 0.4625 0.0493 
6 0.1875 0.2750 0.1670 
7 0.1156 0.1594 0.3679 
8 0.0688 0.0906 0.6941 
9 0.0398 0.0508 1.2282 
10 0.0227 0.028 1 2.1184 

... ... ... 

According to Theorem 1, the closed-loop stability can be obtained 
if the prediction horizon is greater than or equal to eight in EHPC1. 
On the other hand, the closed-loop system designed via the EHPC2 
strategy is asymptotically stable if the prediction horizon is larger 
than or equal to seven. 

Example 2 (Example of [ I O ] ) :  Consider the following nonmini- 
mum phase system 

( 1  - 0 . 5 q - ’ ) ’ y ( t )  = ( - 1  + 1 . 2 q - l ) u ( t  - 1 ) .  

The values of gk,  Gk, and H k  are reported in Table 11. Its gain p 
is 0.8. 

Proposition 2 of [lo] points out that if for some k > 0, either 

closed-loop system designed with the E H X 2  strategy with prediction 
horizon k is asymptotically stable. According to this criterion, the 
closed-loop stability can be obtained with k = 3 in EHPC2. But, by 
using Corollary 1 in this paper, when k = 2 ,  since g1 # g z ,  and 
g2 = HZ = 0.2 ,  the closed-loop stability can also be obtained with 
k = 2 for this overdamped plant. For EHPCl, since Proposition 1 
of [ 101 is a special case of Theorem 1, the results are the same for 
Proposition 1 and Theorem 1, i.e., the closed-loop system designed 
via the EHPCl strategy is asymptotically stable if the prediction 
horizon is greater than or equal to six. 

gk > gk+l > ” ’  > gN > O o r g k  < gk+1 < ‘.. < gN < 0,thenthe 

VI. CONCLUSIONS 
This paper has introduced some simple criteria for choosing the 

prediction horizon in extended horizon predictive control. The closed- 
loop system designed via these criteria is asymptotically stable, as 
long as the given plant is asymptotically stable despite its property 
of being overdamped or underdamped. 
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Extreme-Point Robust Stability 
Results for Discrete-Time Polynomials 

F. PCrez, D. Docampo, and C. Abdallah 

Abs%ruef--This paper provides some new extreme-point robust-stability 
results for discrete-time polynomials with special uncertainties in the 
coefficient space. The proofs, obtained using the bilinear transformation, 
are simple, and the results specialize to existing robust-stability results. 

I. INTRODUCTION 
The stability of uncertain polynomials has recently become an 

active area of research. The problem was elegantly solved in the 
continuous-time case by the Kharitonov theorem [ 11. Such a solution 
does not exist for discrete-time polynomials [2], although results are 
available in special cases [3], [4], and [5]. The main contribution 
of the paper is to extend the class of uncertainties which may be 
dealt with in the discrete-time case. Fam [6] presented a geometric 
approach to the stability problem using the barycentric coordinates 
(BC). Bartlett et al.  [3], in their edge theorem, have shown that 
the stability of the exposed edges of the polytope r is a necessary 
and sufficient condition for the stability of every member of I?. The 
problem of checking such edges generated much interest, see, for 
example [7]. In some cases, however, the stability of the two extremes 
of an edge is sufficient to guarantee the stability of all polynomials on 
that particular edge [4] and [SI. These are known as “extreme-point” 
tests to which this paper is related. 

Since the submission of this paper, Rantzer [SI published a 
paper addressing the general problem of stability of polytopes of 
polynomials. In addition, the results of [9] are similar in scope and 
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were independently derived. We point out here the importance of 
extreme points or vertex results in the problem of stabilization of 
uncertain plants. Despite much of the recent work in that area, one still 
has to stabilize a number of plants (at least four) before the stability of 
the family is guaranteed. The problem of simultaneously stabilizing 
more than two plants is, however, an open problem. The vertex 
results allow us to stabilize two extreme plants while guaranteeing 
the stability of their convex combinations. 

In Section 11, we will formulate the problem and introduce our 
notation. New stability results are given in Section 111, and some 
examples are presented in Section IV. Our conclusions are discussed 
in Section V. 

11. DEFINITIONS AND PROBLEM STATEMENT 
The set of all univariate real polynomials in the complex variable 

z is denoted by R[z]. Each polynomial in R[z] has the form 
P ( z )  = aozn + a1zn-' + + ~ , - ~ z  + a,, where n is a 
nonnegative integer and each a, is an element of R. If a0 # 0, 
the degree of P ( z ) ,  denoted by deg P ( z ) ,  equals n. A polytope r 
of a finite set 2 of polynomials P ( z )  is the convex hull of that 
set. We now review the BC concept [lo] and discuss the stability 
of P(z ) .  Consider the bilinear transformation s = ( z  + l ) / ( z  - 1); 
z = (s + l ) / ( s  - 1)  which maps the unit disk of the z-plane to the 
left-half s-plane. Let us define the polynomials A, ( s ) ,  i = 0, .  . . , n 
as A , ( s )  = (s + 1)"s - l )n-z .  Substituting z from the bilinear 
transformation into P ( z )  and multiplying by (s - l),, we get 

P ( s )  = a o A n ( s )  +aiA,-i(s) + * * . + a , A o ( ~ )  

+ bn (1) = bas" +  IS"-' + . . . 
where bo, bl , .  . . , b, are the barycentric coordinates of P ( z )  [ 101. 
The following two lemmas describe A , ( s )  and will be useful in 
proving the robust stability results of the following sections. 
Lemma I: The polynomial Ak(s )+A, -k ( s )  for all n and k < n 

is a even polynomial. 0 
Proof: This follows from (s + I)'(s - l)n--k + (s - I ) ~ ( S  + 

Lemma 2: If n is even, then A, l z ( s )  is an even polynomial. 0 
Proof: It follows directly from the previous lemma. 

Lemma 3 [ I l l :  Let P(s ,  A) = PO(.) + A p d ( S ) ,  where pd(s) is a 
polynomial with all even or all odd-degree terms and 0 5 A 5 A,,,. 
Then, P(s ,  A) is stable for all 0 5 X 5 A,,, if and only if P(s,  0) 

0 
The problem addressed in this paper is to deduce the stability of 

1)n-k - - (-s + l)-k(-s - 1y-k  + (-s - l)k(-s + 1y-k .  

and P(s,  A,,,) are both stable. 

all polynomials in r from the stability of a subset of r. 

111. NEW STABILITY RESULTS 

In this section we consider that a particular coefficient a, is known 
to fall in the following closed interval U, 5 a, 5 U;'. Let us also 
define the extreme polynomials 

S ( z )  = P ( z ,  a;, a;-*) 
= aazn + ... + a,zn--' + . . . +a;-$ +.  . . +a,. 

P4(z) = P ( z ,  a;, a t ; )  

The first problem addressed is to obtain conditions under which the 
stability of an edge can be easily derived from the stability of the 
extreme polynomials, We first restate the following theorem which 
appeared in [12] 

Theorem I: Given the family of polynomials P ( z )  = 
{ P ( z ) ;  a; 5 a, 5 a;'}, where for some i, 0 5 i 5 n, a,  - a; = 
an--z - a i - t .  Then, the entire family of polynomials is stable if 
and only if P l ( z )  and P2(z) in (2) are stable. For the case when 
a;' - a, = an--% - a i - , ,  the entire family of polynomials is stable 

0 

It should be noted that Theorem 1 contains two important con- 
straints: 1) the coefficients must be coupled as ( a z ,  an-%) and 2) the 
edges allowed in the pairwise variation have 7r/4 and 3n/4 slopes in 
the parameter space. Now we will show that Theorem 1 and Theorem 
2 in [5] are particular cases of Theorem 2 which allows a larger class 
of perturbations. To state Theorem 2, we introduce the polynomials 

if and only if P s ( z )  and P4(z) are stable. 
Proof: The proof of this theorem may be found in [12]. 

P3,(z) = P ( z ,  a?, a;+J-z); P43(z) = Pb, a,, d+,-J. (3) 

Similar definitions of Pk3(s); k = 1, 2, 3, 4 will also be used, and 
we let 1x1 be the integer part of the real number I. 

Theorem 2: Consider the family of polynomials P ( z )  = 
P ( z ,  a, ,  = + a1zn-' + ... where for some 
i ,  0 5 i 5 (n + 1)/2 and some 0 5 J 5 i 

(4) 

Then, the entire family of polynomials is stable if and only if the 
corresponding comer polynomials PI, (2) and P2, (z) are stable. 
Similarly, when 

a;' - a,  = an+,-z - a,+,-, (5 )  

P43(z). 0 

- 
a,  - a ,  = an+,--' - an+3--2. 

the stability of the whole family is equivalent to that of P33 (2) and 

Proof: We provide the proof for (4), easily adapted to (5). 
The Schur stability of P ( z )  does not change if we multiply this 
polynomial by 9, 0 5 j 5 i to obtain P'(z)  = + 
a$z"+J-'+. . .+a',+,, where a: = a,; i 5 n and ai = 0 otherwise. 
The proof is then completed by Theorem 1. 

If we set j = 2i-n, i > L(n-1)/2], we find the allowed variation 
a; 5 a, 5 a;'. Combining this with the Edge Theorem in [3], we 
obtain Theorem 2 of [5] .  The next theorem will relax constraint 2) 
above by allowing variations in the sector 7r/4 5 0 5 37r/4. 

Theorem 3: Consider the family of polynomials P ( z )  = aozn + 
a 1 2 - l  + ... + a, where for some i ,  0 5 i 5 (n  + 1)/2 and some 

a, - a; = P(an-x - (6) 

Then, the entire family of polynomials is stable if and only if Pi (2) 

and P2(z)  in (2) are stable. Similarly, if 

(7) 

then, the entire family of polynomials is stable if and only if P3(z) 
0 

Proof: We will derive the result for case (6), since case (7) is 
similar. The Schur stability of P ( z )  is maintained if we multiply 
it by the term (zk + P ) ,  where 0 5 P < 1 and k = n - 2i. In 
this case, a new polynomial P'(z)  = ( z k  + P)P(z)  or P' ( z )  = 
a o ~ n + k  + . . . + a ~ ~ + ~ - ~  +.  . . + U,-~Z' +.  . . + Pa,  is obtained, 
where we have used the fact that ( n  + k)/2 = n - i .  Let 

P , 0  5 P < 1 

a;' - a,  = P(an-z  - U;-%) 

and P4 (z) in (2) are stable. 

(8) = a0zn +.  . . +a;%"-' +.  . . + a;t--,z* + . . . +a,. (2) A = a,  - a ,  = P(an-t - a;J 
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so that 0 5 X 5 a: - a; = p(a;-; - a i - ; ) .  If we write PI(%) = 
+ ... + ak+k, it becomes clear that the only 

coefficients of P’(z) that are varying with X are ah+k-;, atn+k)/2 
and a: .  Identifying terms and using (8), the variations are 

+ 

a: = a; = a; + = a’.- + 

a;+!& = pa”-r  = pa,-; + X = a;>&* + A. (9) 

If we denote by P‘(s) the result of applying the bilinear transforma- 
tion to P ( z ) ,  we can write 

n+k 

P’(s) = 1 a;A,+k-;(s).  (10) 
i = O  

Substituting (9) into (lo), we can write 

Then, using Lemmas 1 and 2 and noting that the degree 
of P’(s) ,  n + k is always even, we obtain P‘(s) = 
P’(s, a:- ,  u & + ~ ) , ~ ,  + X P d ( s )  where Pd(S) is a 
polynomial with only even powers of s. The proof is then completed 
by Lemma 3. 

~ o r o ~ ~ u r y  I: The family ofpolynomials P ( z )  = aozn+alzn-’+ 
... + an where for some i, 0 5 i 5 n, some j ,  max(2i - n, 0) 5 
j 5 i and some P ,  0 5 P 5 1, a, - a; = P(U, ,+~-~ - ai+,-,) is 
stable if and only if Pl,(z) and Pz3(z) in (3) are stable. Similarly, 
if, U;’ - a, = P(U.,+,-~ - a,+]-,), then the stability of the entire 
family of polynomials is equivalent to the stability of P3,(t) and 

Proof: The proof is obtained by applying Theorems 2 and 3 to 

By combining the previous results, we obtain our most general test. 
Corollary 2: Consider the polytope in the coefficient’s space 

where each pair ( a , ,  ak),  0 5 i 5 L(n + 1)/2], n - i 5 k 5 n 
is varying inside a polygon with edges sloped in the closed interval 
[.lr/4, 3 ~ 1 4 1  and where each a, can only be combined with one ak 
and vice-versa, i.e., the pairwise variations (us,  ak) and (arr a,) ,  k # 
I are not allowed simultaneously. Then, every polynomial in the 
polygon will be stable if and only if all the polynomials obtained 

0 
Proof: The result is a direct consequence of the Edge Theorem 

[3] and Corollary 1. 
Note that the “Weak-Kharitonov Theorem’’ [3] is a particular case 

of this corollary, where the polygons are “rotated” boxes and the 
coefficients are combined as in Theorem 1. 

P4,(2) in (3). 0 

P( z )  successively. 

by combining all the polygon comers are stable. 

IV. NUMERICAL EXAMPLES 
Exumple I :  Consider the family P ( z )  = (202~ - 3 . 5 ~ ~  - a 2 2  - 

0.32 + 1, where the couple (ao,  u2) is varying as a0 = -2.7 + 
A; a2 = -2.7 + A, with 0 5 X 5 6.6. Note this variation would 
correspond to i = 0 and j = -2 in (4). Both extreme polynomials 
are stable, while for X = 0.5, P ( z )  is unstable. This proves that the 
results in Theorem 2 can not be extended to any j ,  i - n 5 j < 0.0 

Example 2: Considerthe family P ( z )  = a 0 ~ ~ + 1 . 2 2 ~ - 0 . 0 2 5 ~ ~ +  
1.752 + a4.. where the couple (ao, u4) is varying as a0 = 2.7 - 
A; a4 = 1.98+X/1.5, with 0 5 X 5 15.4. Note that this corresponds 
to i = 0 and P = 1.5 in (7). It can be verified that while the extreme 
polynomials are stable, the polynomial obtained for X = 1 is not. 0 

I a 3  

Fig. 1. Variation Regions for Example 3. 

Example 3: Consider the family P(2)  = a0z4 + 3 . 2 ~ ~  + azz2  + 
a3z + a4, where the pairs (ao, a4) and (a2,  a3) are varying as in 
Fig. 1. It can be seen that the 12 extreme polynomials represented by 
all the possible comer combinations are stable and that the conditions 
of Corollary 2 are satisfied, so that every polynomial belonging to 
the family is stable. 0 

V. CONCLUSIONS 

In this paper we have showed that for special coefficient variations 
in the sector bounded by the n/4 and the 3n/4 sloped lines, the 
stability of the family of polynomials may be reduced to a stability 
check of the comer polynomials. It is obvious by now that a 
counterpart of Kharitonov’s Theorem (with necessary and sufficient 
conditions) does not exist in the discrete polynomial case. We have 
then attempted to obtain necessary and sufficient conditions for the 
stability of special polynomials, with simple tests in the spirit of 
Kharitonov’s Theorem. 
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