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Analytic Phase Margin Design noted. We denote the set of real numberdbynd the set of complex
numbers byT Also Re(s) denotes the real part of the complex
Peter Dorato, Domenico Famularo, and Chaouki T. Abdallah numbers, arg(s) denotes the argument of the complex numhemd
[|W(s)|| denotes thé<., norm of the function¥ (s) [4]. Finally,
we say that a transfer functidfi(s) is stableif it is BIBO stable,

Abstract—In [4] an algorithm is presented for analytic phase margin i.e., T(s) is proper and analytic ile(s) > 0.

control design. Without special care, however, the compensator computed

with this algorithm may not be a real rational function. The problem is 1) A function W (s) is astrict Schur (SS) functioif it is analytic
evident when the plant hasreal unstable poles. In this case the algorithm and ||W(s)||l= < 1, for all s:Re(s) > 0. Note that an SS
in [4] requires a mapping of real points into complex values, and it is not function may have complex valued coefficients.

clear that the resulting compensator has real coefficients. The purpose of . . . - ..
this paper is to show how acomplexmapping required in this algorithm 2) A function V(s) is astrictly bounded-real (SBR) functioif

can always be selected so that the compensator does have real coefficients. it is areal SS function, that is an SS function with only real
coefficients.

3) A function Z(s) is a strictly positive (SP) functiornif it is
analytic and—=n/2 < arg(Z(s)) < w/2, or equivalently

|. INTRODUCTION Re(Z(s)) > 0, for all s:Re(s) > 0.

4) A function F'(s) is ananalytic-positive (AP) functign(1], if it
is analytic and—= < arg(T'(s)) < = for all s: Re(s) > 0.

e define theanalytic phase margin design probleas that of

Index Terms—Analytic positive, interpolation, phase margin optimiza-
tion, strict Schur.

In most introductory control textbooks, phase margin design is
done by trial-and-error loop-shaping techniques [3], [7]. A one-point

frequency design approach is sometimes presented as an “anal - . . : .
design technique, even though such an approach may lead todgﬂermlnlng the maximum phase margin possible for a given plant

unstable closed-loop system, as noted in [7]. In [4] and [5], true(s) and synthesizing a feedback controli€i(s) which realizes
analytic procedures are presented for phase margin design. In _admissible phase margin. This _problgm IS solved_ in [4] through
ticular, in [4, Sec. 11.4] the maximum possible phase margin forcgnf_ormal mappings a_md interpolation _W'th _SS func'_[lons_. We sum-
given plant is derived, and an algorithm is given for the synthesis Bf2rizé next the solution procedure given in [4]. First it is noted
a compensator which achieves any phase margin up to the maximhn%t_ the phase maf@!',” problem, for a given phase‘ ma?rglnvc_)lv_es
value. However, without special care in the case when the plant HR§ling & controllerC'(s) such that the loop-gaif’(s) ’(s) satisfies

real unstable poles, the resulting compensat¢s) may not be a the following condition:
real rational function. The problem occurs in such a case because T{lgr .
algorithm involves finding an interpolating function witomplex

values at real points. The problem of a complex compensator does @)
not arise in the gain margin optimization case (see [4, Sec. 11.

because in that case, real points are mappedregbinterpolation ¢
all s:Re(s) > 0, by the closed-loop transfer functiofi(s) =

values. e
C(s)P(s) . H H
The purpose of this paper is to show how the nonreal interpolating (- 7(s ©f the following region of the complex plane (union of

function can be selected so that the resulting compensator is real. TR Poldface vertical lines in Fig. 1):
paper also presents a convenient way to deal with plants that have 1 sin(8)
zeros at infinity of multiplicity greater than one. Several examplesare F =49s€C|s= s +j;7— 7,
: . 4 . 2 2(1 — cos(h))
included to illustrate the design approach. It is also seen that for some ‘

plants, the maximal achievable phase margin is very small, and ttthis point the problem is then to find a stable functiBfs) which

in focusing on phase margin optimization, very fragile compensatai§oids the regionF. However, to preserve internal stability there

may result [6]. The examples also illustrate that when the plant can@@hnot be unstable pole/zero cancellations in the loop@&inP(s).

be stabilized with a stable compensator, the usual trial-and-errmgis then requires thaf'(s) satisfies the following interpolation

loop-shaping techniques may be very difficult to apply. conditions: 1)T(a;) = 1, i = 1,...,n and 2)T(b;) = 0,
This paper is organized as follows. Section Il contains an OUtliqe: 1,...,m, wherea; andb; are the unstable po|es and zeros,

of the problem and the design procedure. In Section Ill we presq@kpectively, of the planP(s). To simplify the initial discussion, it

some illustrative numerical examples and give our conclusions ji§lassumed that the unstable poles and zeros are all simple and that

Section IV. P(s) is exactly proper. This problem of avoidance and interpolation

viaT(s) is then converted, via conformal mappings, to that of finding

a stable functionF'(s)

We define first some special functions needed in the sequel. The

#C(s)P(s)#0, foralls,6:Re(s) >0, —0<6<8.

3, . . . .
gl)ondltlon (1) is then shown to be equivalent to the avoidance, for

—égegé}.

Il. OUTLINE OF THE PROBLEM AND MAIN RESULT

functions in question are assumed to fagional unless otherwise F(s) = 1 L= J(T(s) - 3) @)
T2 g+ j(T(s)— 1
Manuscript received January 22, 1998. Recommended by Associate Editor, : ‘7( %) 2)
S. Weiland. This work was supported in part by NASA under Contract NCCW- sin(8) ’ F I . .
0087 and in cooperation with the NASA Center for Autonomous Contrf¥hereaz = TA—cos(@)) — z(tan(3))"", which maps the forbidden
Engineering, The University of New Mexico. region ofT'(s) into the bold face line segment shown in Fig. 2. Note

P. Dorato and C. T. Abdallah are with the Department of Electrical ang\5¢ jf F(s) is an AP function, the line segment in Fig. 2 is indeed
Computer Engineering, The University of New Mexico, Albuguerque, NMavoided On the other hand, an AP function can always be written
87131-1356 USA (e-mail: peter@eece.unm.edu). : ! Y

D. Famularo is with the Dipartimento di Elettronica, Informatica e Sis@S the square of an SP function, i.e.,
temistica, Universi degli Studi della Calabria, Rende, 1-87036, Italy. )
Publisher Item Identifier S 0018-9286(99)07882-4. F(s)=Z"(s) 3

0018-9286/99$10.00 1999 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 10, OCTOBER 1999

Im(T)

2(1-cos( 6))

Re(T)

Fig. 1. Region ofC to be avoided byI'(s) for all s:Re(s) > 0.

Im(F(s))

Re(F(s))

Fig. 2. Region to be avoided h¥(s) for all s: Re(s) > 0.

where Z(s) is an SP function. Finally the mapping

Z(s) — d9/2

W= 2T

(4)

is used to convert the SP functidfis) into an SS functiord¥V (s),
with induced interpolation conditions

{W’((L,;) =3 = —jsin <g)e'j§/2, i=1,...,n )
Wi(b;) =0, 1=1,...,m.

1895

3) Use the Nevanlinna—Pick interpolation algorithm to compute
the strict Schur functio®V (s) which satisfies the conditions
(5); see [2] for detalils.

4) Compute
) e/ 4 e,fjo/zﬂ/'(s)
260 = = ()
5) Compute
1 1-2Z%(s)
T(S) = 5 — Jjaz m (8)

6) Finally, compute

T(s)

)= I -TG)

©)
The above algorithm does not guarantee #dts) is areal function
(in particular real unstable poles must interpolate to complex values
A3), and (7) and (8) are nateal-to-real mappings. Thus, without
special care,I'(s) in (8) will not be a real function, and hence
the controller C(s) in (9) will not be a rational function with
real coefficients. A realC(s) is, of course, required for physical
realization. The following theorem ensures a r€dk) when all the
unstable poles and zeros are real. A simple extension of the theorem
may then be used when complex poles and zeros occur in complex
conjugate pairs.

Theorem 2: Let V(s) be an SBR function which satisfies the
following interpolation conditions:

{V(tu) =18l = sin(%), i=1,...,n

V(b;) =0, t=1,....m

(10)

wheref < 6., andb; anda; are, respectively, the right half-plane
zeros and poles aoP(s). Then the function
W(s) = —je’?V(s) (11)

which satisfies the conditions in (5) is the required SS function, and
the resulting compensatdr'(s), computed from (7)—(9), stabilizes
the plantP(s), guarantees a phase margin equab t& #m,.x, and
has real coefficients.

Proof: First note thatiW(s) given in (11) is a function which
satisfies the interpolation conditions in (5) adV(s)|l« =
IV (5)]loo. As shown in [4], if§ < B, then there exists a strict
Schur function which interpolates the points in (5), hence there exists

The phase-margin design problem is then reduced to a Nevapr SBR functionV (s) which interpolates the points in (10).

linna—Pick interpolation problem for the computationidf(s), with

We now show thaf¥(s) computed in (11) does result in a real

the phase margifi selected less thafi,.., wheref,. is given by C(s). From (7) we have

the following theorem.
Theorem 1 [4]: If P(s) is stable or minimum phase, thén,... =

m; otherwise
Brnax = 2sin™"' < ! ) (6)
Yopt

where vopc = inf |[|T(s)|l, subject to interpolation conditions

T(a;) = 1, T(b;) = 0.

The algorithm for the computation &'(s) is then given in the

following steps.
1) Compute

inf ||7(5)[loc = ot

given T'(a;) = 1, T'(h;) = 0.
2) Pick® < fiax Wheref...x is computed from (6).

1—je 72V (s)

Z . = /]6/2+.
(s)=e 1+ jel?/2V (s)

(12)

Now if this expression forZ(s) is substituted back into (8) one
obtains, after some algebra

1- sin(g)V(s)
sin(g)(l —V2(s))

which is a real rational function. The expression of the compensator
obtained from (9) is then

Vi(s)(1 = sin (5)V(s)) .
P(s)(sin (%) - V(s))

T(s)=V(s)

(13)

C(s) = 14)

O
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Fig. 3. Loop gain Nyquist diagram (Example 1).

Remark 1: If the plant P(s) is not exactly proper, then the interpolated by multiplying the interpolating function for the unstable

function W (s) must contain a roll-off term of the type poles by terms of the type
1 s —b; s — b
(ts+ 1)* s+bis+bi
wherek is the relative degree dP(s). In this casdV (s) is modified In the next section, Theorem 2 is used to compat¢ compensators
as follows: for some phase margin design problems.
70\ — . §0/2 1 7 (
Wi(s) = —je’ (rs + 1)k Vi(s) [ll. EXAMPLES

) . . . ) Example 1: This example is taken by [4]. In this case the plant is
where the interpolation conditions on the functiiis) are given as (s— 1)
s — 5
oy J P £ = = -
‘;' (a;) = (Ta;i + 1)k|%5| t (15) (s) (s+1)(s—p)’ b 4
Vi(bi) =0, i=1,...,m.
) and the value ofy.,,., as computed from [4] isyo,. = |255| = 9
The parameter must be chosen small enough to ensure that) is With fmax = 12.7587°. We select the guaranteed phase margin to

an SBR function and that the guaranteed phase marigipreserved. bed = 10° = 7. This plant has a simple zero at infinity, hence a

Remark 2: The same proof remains valid when the unstable zeréisst-order roll-off term of the for% is required, withr chosen

and the poles appear in complex conjugate pairs. In this case #meall enough so that th¥..-norm ¥ (s) remains less than one. In
interpolation conditions fol’(s) are given by this caselV(s) is exactly
b1 E] bz 52 . bq Eq a aq ao ao e Ap (7,7, ~ P T (5 — ]_) 4
1/ — 14407 = /36 _: (_) . _
Wis) e s 56 ) G s+ 155 "~ 135
00 00 ....00 13 18 18 18 .- 18] |8 o
] ] ) ] _ resulting in the controller
the first line of the Fenyves array [2]. With the Nevanlinna—Pick . . .
algorithm [2] we obtain the following expression for tReth line C(s) = 36045_ + 1‘48-061085 +165.938 41
of the Fenyves array: 4s* — 1121s — 49445
a i as ay ... ap iy, For this plant the parity interlacing propertg.ip) condition is not
satisfied, so that an unstable controller is expected. In particular,
w8l 718l I8l %18l .. w8l 8 the controller designed above has one unstable pole, so that for
h closed-loop stability the Nyquist diagram should encircle the
where point twice (one unstable pole in the plant and one unstable pole
& a4 by a; + by in the controller). The Nyquist plot shown in Fig. 3 has the correct
Yo = = . : :
& H a; — by a; — by, number of encirclements. The Bode plots of the loop gain are shown
k=1 T

in Fig. 4 and the computed increasing gain and phase margins are
Now the interpolation values appear in complex conjugate pair &M = 0.3972 dB, # = 10.23° > ¢. Note that in order to meet a
that areal interpolation function exists. The zerds, b; are easily near-optimal phase margin, the Nyquist diagram is distorted in such
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Fig. 4. Loop gain Bode diagram (Example 1).

a way that a very small gain margin results. This implies a very = (8.787351 + 5.006 403;)10*
fragile/nonrobust controller with respect to gain perturbations and = (116.6633 — 9.3824135)10°
illustrates the robustness and fragility problems that typically result 751727 — 3.3130331)10°
when a single optimization criterion is used for design. = (3.751727 - 7)
To show how an arbitrary choice of the Schur function may result ce = (1.198 356 + 1.886 006 )
in a complex coefficients compensator for the plant in this example, (—2.507776 — 6.588 968j)102
(-
(—
(—

consider the following SS functiofl (s):

o
3
Il

)
»
I

2.

1.326417 — 2.8805135)10"
6.851272 — 1.641024;)10"
3.143535 4 2.617595;)10".

1)
s+1)
(—319 + 288¢77/3% )5 4 1285 — 14407 ™/3°
(45+155)((412+288je~/7/3%)5—205—360je~/7/%%)  Note that the there are no common poles/zeros so that the complexity
(16) of the controller cannot be reduced. When the compensator is

complex, the frequency response does not have the usual symmetry
properties for positive and negative frequencies. Thus, the Nyquist

)
O
I

W(s)= —310(

This SS function interpolates to

W(5/4)=p8=—j Sin(;) /36 plot is no longer symmetric about the real axis, but the phase-margin
i 36 (17)  design will still meet the phase-margin design specifications.
W) =0 Example 2: Let us consider the following linear plant:

as required by the conditions in (5), and has the proper roll-off at

infinity. The compensator computed from thi(s) is given by P(s) = (s —1)(s—3) (18)
4 3 2 (9_2)(5—4).

c18 +cos’ + 38 +cas+ s )

cest 4+ c75% 4 css? + cos + cio

¢1 = (3.514 564 + 8.105 -/ll?j)l()2

C(s) =
Note that this plant does not satisfy the.p.[8] and hence cannot be
stabilizable by a stable compensator. The first step in phase margin

co = (1.528 751 + 3.0106865)10* design is to evaluate the maximum possible phase margin for the
Wi(s) = 7n’T/%05sin(L) (5_1)(8_3);(( 13 + 525 sin? ( )).5—1—384—1()0()5111 (W))
360 (s+1)(s+3) ((—1 + 1025 sin’ (m))s — 2 — 27505in? (ﬁ))

_ —59.42228s* — 209.75906s° + 382.15262s” + 1763.113 735 + 1270.300 95
T 58.89206s* + 310.11131s3 + 315.265 4552 — 414.70261s5 — 478.748 81
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Fig. 5. Loop gain Nyquist diagram (Example 2).
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Fig. 6. Loop gain Bode diagram (Example 2).

given plant. Using thé&{.., optimization techniques in [4] one obtainsvalue of W (s) so that levels of precision in the realization ©f s)

for the given planty.,s = 77.7492 which leads to the maximum may be studied. Usin§’(s) and the mappings (7)—(9;(s) is given
possible phase margifin.. = 2sin™'(1/70pt) = 1.4739°. It is by the other equation shown at the bottom of the previous page. The
interesting to note how small the maximum phase margin is for thi®mpensator is, as expected, unstable. For closed-loop stability the
particular plant. We select a design valuefo& 1° = 155+ The SS Nyquist plot should encircle the-1 point three times (two unstable
function which interpolates the points (5) for this case is given by thmles in the plant and one in the controller) in the counterclockwise
equation shown at the bottom of the previous page. We list the exaehse. The Nyquist plot in Fig. 5 verifies that this is the case. Bode
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Fig. 7. Loop gain Nyquist diagram (Example 3).
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Fig. 8. Loop gain Bode diagram (Example 3).

plots of the loop gain are shown in Fig. 6. The computed gain arar this plant, this design is extremelsagile [6] with respect to any
phase margins aréM = 0.04894 dB, § = 1.043° > §. The actual Possible time delays in the controller.

phase margin is a bit larger than the guaranteed design value, bu cﬁ_xample 3: The following phasg mgrgin design problem is taken
rom [7, Example 9.2]. The plant is given by

course less that the maximum possible value. Trial-and-error phase
margin design would be difficult in this case because an unstable ( 4

Pls)= ——.
controller is required. Because of the inherently small phase margin s(s+1)(s+2)
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((s* 435 +2)(47° (1 + v3)s® + 1277(1 + V3)s” + 127(1 + V/3)s — 1 + V/3)

C(s) =
(5) 16(1 + \/E)T(TS +1)3(72s2 + 315+ 3)

138245 + 3.756 10%s* + 3.4388710%s® + 1.67110%s% + 2.6617210°s + 1.330 86 10°

C(s) = - — — — -

(2) 7.695151072s% + 41.3549s* + 9.26032 10353 4 1.050 62 10¢s2 + 5.94338 107 s + 1.33086 10°

The controllerC(s) must achieve a phase margin> 50°, with REFERENCES

a DC gain of one, i.e.(’(0) = 1. In [7] this problem is solved . .

with a simplelag controller. The conditiorC'(0) = 1 requires the 11 C- T. Abdallah, P. Dorato, F. &ez, and D. Docampo, "Controlier
. . L _ . 1 _ synthesis for a class of interval plantsXutomatica vol. 31, no. 2,
|nterpolat|on_co_ndltlonr 0) = —lime—o TPy = 3 Thg pp. 341-343, 1995,

problem of findingvy.,+ is complicated by the additional condition [2] P. Dorato, L. Fortuna, and G. Musca®obust Control for Unstructured
on the derivative off'(s), but it can be shown that,,, = 1, leading Perturbations—An Introductign Berlin, Germany: Springer-Verlag,

t0 fmax = 7. We select a design phase margin much larger than_ 1992. _ .
in [7], but below the maximum valué . in particular we select [3] R.C.Dorf, and R. H. Bishoglodern Control Systen8th ed. Reading,
in [7], max] IN P MA: Addison-Wesley, 1997.

6 = 150° = 3¢. The conditionT’(0) = —3 is not enforced in the [4] J. C. Doyle, B. A. Francis, and A. R. Tannenbaufeedback Control

interpolation procedure but is satisfied at the end when an expression Theory New York: McMillan, 1992.
of T'(s) with a free parameter is obtained. In this case we can sele¢?] P.P.Khargonekar and A. Tannenbaum, “Non-Euclidean metrics and the

W(s) robust stabilization of systems with parameter uncertainBEE Trans.
Automat. Contr.vol. AC-30, pp. 1005-1013, Oct. 1985.
W(s) = _jej'(57r)/12 sin 5_71' 1 [6] L.H. KeelandS. P. Bhattacharyya, “Robust, fragile, or optimdREE
= s B —(7-5 T1)3 Trans. A_u_tomat. Contrvol. 42, pp. 1098-1105, Aug. 1997_.
[7] C. L. Phillips and R. D. Harborf-eedback Control of Dynamic Systems
where the constant time in the roll-off term is any positive real 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

number. We will use- to meet the derivative interpolation condition. [8] Dt- bCI Y?U? ?lg\ Br0fr]ngi<|)t_m0r,_ %Td dC-nNr-n_LUi “Siqglrﬁ;\%?pmfe?db%k
The expression of the controller, computed from (7)~(9), with variable \s/oall. Illcz)?rﬁ). é’, plpé61159—li7|:\3/?1|37§. ynamical systemattomatica
7, is given by the equation shown at the top of the page. The condition
C(0) = 1 then yieldsT = 0.011 164 5. Finally the controllerC(s)
is given by the other equation shown at the top of the page.
The above controller is stablp.(.p. is satisfied for this plant). Since
the plant has no poles inside the right half-plane and the controller

is stable, the Nyquist diagram for the compensated system should Correction to “Optimal Control of
have no encirclements of thel point for closed-loop stability. This Perturbed Linear Static Systems”
is verified by the Nyquist plot shown in Fig. 7. Fig. 8 shows Bode

plots for the loop gain of the compensated system. The computed Roy Smith and Andy Packard

gain and phase margins af&\ = 18.13 dB, § = 150.5° > 6. It is

interesting to note that the analytic 150 degree phase margin design . . .
lqorith d d a fifth ordesh leactontroll dt Abstract—This paper presents a typographical correction to the proof

algorithm produced a filth ordgyhase-ieaccontrofier, cCompared 10 ¢ thegrem 4 in the above-mentioned paper.

the first-order phase-lag design in [7] for a 50-degree phase margin. ) )

As it turns out, it is impossible to get a phase margin greater thar/ndex Terms—Robust control synthesis, structured singular value.

90 degrees for this plant with lag compensation. What is interesting

is that the analytic procedure automatically selected the “right” type |

of compensator.

. THE CORRECTION
Equation (6Y should be replaced by the following:

IV. CONCLUSION Amax(zVa +VB) <0 (6)

We have shown how aonrealinterpolating functiori? (s) can be where
chosen so that the analytic phase margin design algorithm developed T 9
in [4] can be used to design a compensator wéhl coefficients. Va=V, qll}l } [P Pol— |:’YOI EDLI
While phase margin design is only one approach to robust design, it 12
is commonly used in practice and is the only robust design approach Vi = qupzé }[le P - {0 9 D‘i
discussed in most introductory control texts, where the problem is P, B 0 I
generally solved with trial-and-error procedures. A very S|gn|f|cantManuscript received June 30, 1998, Recommended by Associate Editor,

part_of the a.nalytic design algo.ritf_]m develpped in [4] i_s that A Tesi. This work was supported by the NSF under Grants ECS-93-8917 and
maximum achievable phase margin is determined for any given plapt:s 9057420.
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