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Analytic Phase Margin Design

Peter Dorato, Domenico Famularo, and Chaouki T. Abdallah

Abstract—In [4] an algorithm is presented for analytic phase margin
control design. Without special care, however, the compensator computed
with this algorithm may not be a real rational function. The problem is
evident when the plant hasreal unstable poles. In this case the algorithm
in [4] requires a mapping of real points into complex values, and it is not
clear that the resulting compensator has real coefficients. The purpose of
this paper is to show how acomplexmapping required in this algorithm
can always be selected so that the compensator does have real coefficients.

Index Terms—Analytic positive, interpolation, phase margin optimiza-
tion, strict Schur.

I. INTRODUCTION

In most introductory control textbooks, phase margin design is
done by trial-and-error loop-shaping techniques [3], [7]. A one-point
frequency design approach is sometimes presented as an “analytic”
design technique, even though such an approach may lead to an
unstable closed-loop system, as noted in [7]. In [4] and [5], true
analytic procedures are presented for phase margin design. In par-
ticular, in [4, Sec. 11.4] the maximum possible phase margin for a
given plant is derived, and an algorithm is given for the synthesis of
a compensator which achieves any phase margin up to the maximum
value. However, without special care in the case when the plant has
real unstable poles, the resulting compensatorC(s) may not be a
real rational function. The problem occurs in such a case because the
algorithm involves finding an interpolating function withcomplex
values at real points. The problem of a complex compensator does
not arise in the gain margin optimization case (see [4, Sec. 11.3]),
because in that case, real points are mapped intoreal interpolation
values.

The purpose of this paper is to show how the nonreal interpolating
function can be selected so that the resulting compensator is real. This
paper also presents a convenient way to deal with plants that have
zeros at infinity of multiplicity greater than one. Several examples are
included to illustrate the design approach. It is also seen that for some
plants, the maximal achievable phase margin is very small, and that
in focusing on phase margin optimization, very fragile compensators
may result [6]. The examples also illustrate that when the plant cannot
be stabilized with a stable compensator, the usual trial-and-error
loop-shaping techniques may be very difficult to apply.

This paper is organized as follows. Section II contains an outline
of the problem and the design procedure. In Section III we present
some illustrative numerical examples and give our conclusions in
Section IV.

II. OUTLINE OF THE PROBLEM AND MAIN RESULT

We define first some special functions needed in the sequel. The
functions in question are assumed to berational unless otherwise
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noted. We denote the set of real numbers byIR and the set of complex
numbers byCI. Also Re(s) denotes the real part of the complex
numbers; arg(s) denotes the argument of the complex numbers, and
kW (s)k1 denotes theH1 norm of the functionW (s) [4]. Finally,
we say that a transfer functionT (s) is stable if it is BIBO stable,
i.e., T (s) is proper and analytic inRe(s) � 0.

1) A functionW (s) is a strict Schur (SS) functionif it is analytic
and kW (s)k1 < 1, for all s: Re(s) � 0. Note that an SS
function may have complex valued coefficients.

2) A function V (s) is a strictly bounded-real (SBR) functionif
it is a real SS function, that is an SS function with only real
coefficients.

3) A function Z(s) is a strictly positive (SP) functionif it is
analytic and��=2 < arg(Z(s)) < �=2, or equivalently
Re(Z(s)) > 0, for all s: Re(s) � 0.

4) A functionF (s) is ananalytic-positive (AP) function, [1], if it
is analytic and�� < arg(T (s)) < � for all s: Re(s) � 0.

We define theanalytic phase margin design problemas that of
determining the maximum phase margin possible for a given plant
P (s) and synthesizing a feedback controllerC(s) which realizes
an admissible phase margin. This problem is solved in [4] through
conformal mappings and interpolation with SS functions. We sum-
marize next the solution procedure given in [4]. First it is noted
that the phase margin problem, for a given phase margin��, involves
finding a controllerC(s) such that the loop-gainC(s)P(s) satisfies
the following condition:

1 + ej�C(s)P (s) 6= 0; for all s; �: Re(s) � 0; ��� � � � ��:

(1)

Condition (1) is then shown to be equivalent to the avoidance, for
all s: Re(s) � 0, by the closed-loop transfer functionT (s) =
C(s)P (s)

1+C(s)P (s) of the following region of the complex plane (union of
the boldface vertical lines in Fig. 1):

FF = s 2 CC s =
1

2
+ j

sin(�)

2(1� cos(�))
;��� � � � �� :

At this point the problem is then to find a stable functionT (s) which
avoids the regionFF. However, to preserve internal stability there
cannot be unstable pole/zero cancellations in the loop-gainC(s)P(s).
This then requires thatT (s) satisfies the following interpolation
conditions: 1) T (ai) = 1; i = 1; . . . ; n and 2) T (bi) = 0;
i = 1; . . . ;m, whereai and bi are the unstable poles and zeros,
respectively, of the plantP (s). To simplify the initial discussion, it
is assumed that the unstable poles and zeros are all simple and that
P (s) is exactly proper. This problem of avoidance and interpolation
via T (s) is then converted, via conformal mappings, to that of finding
a stable functionF (s)

F (s) =
1

2
+
a2 � j T (s)� 1

2

a2 + j T (s)� 1
2

(2)

wherea2 = sin(��)

2(1�cos(��))
= 1

2 (tan(
��
2 ))
�1, which maps the forbidden

region ofT (s) into the bold face line segment shown in Fig. 2. Note
that if F (s) is an AP function, the line segment in Fig. 2 is indeed
avoided. On the other hand, an AP function can always be written
as the square of an SP function, i.e.,

F (s) = Z2(s) (3)
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Fig. 1. Region ofCC to be avoided byT (s) for all s: Re(s) � 0.

Fig. 2. Region to be avoided byF (s) for all s: Re(s) � 0.

whereZ(s) is an SP function. Finally the mapping

W (s) =
Z(s)� ej

��=2

Z(s) + e�j��=2
(4)

is used to convert the SP functionZ(s) into an SS functionW (s),
with induced interpolation conditions

W (ai) = � = �j sin
��

2
ej

��=2; i = 1; . . . ; n

W (bi) = 0; i = 1; . . . ;m:
(5)

The phase-margin design problem is then reduced to a Nevan-
linna–Pick interpolation problem for the computation ofW (s), with
the phase margin�� selected less than�max, where�max is given by
the following theorem.

Theorem 1 [4]: If P (s) is stable or minimum phase, then�max =
�; otherwise

�max = 2 sin�1
1


opt
(6)

where 
opt = inf kT (s)k1, subject to interpolation conditions
T (ai) = 1; T (bi) = 0.

The algorithm for the computation ofC(s) is then given in the
following steps.

1) Compute

inf kT (s)k1 = 
opt

given T (ai) = 1; T (bi) = 0.
2) Pick �� < �max where�max is computed from (6).

3) Use the Nevanlinna–Pick interpolation algorithm to compute
the strict Schur functionW (s) which satisfies the conditions
(5); see [2] for details.

4) Compute

Z(s) =
ej

��=2 + e�j��=2W (s)

1�W (s)
: (7)

5) Compute

T (s) =
1

2
� ja2

1� Z2(s)

1 + Z2(s)
: (8)

6) Finally, compute

C(s) =
T (s)

P (s)(1� T (s))
: (9)

The above algorithm does not guarantee thatW (s) is a real function
(in particular real unstable poles must interpolate to complex values
�), and (7) and (8) are notreal-to-real mappings. Thus, without
special care,T (s) in (8) will not be a real function, and hence
the controllerC(s) in (9) will not be a rational function with
real coefficients. A realC(s) is, of course, required for physical
realization. The following theorem ensures a realC(s) when all the
unstable poles and zeros are real. A simple extension of the theorem
may then be used when complex poles and zeros occur in complex
conjugate pairs.

Theorem 2: Let V (s) be an SBR function which satisfies the
following interpolation conditions:

V (ai) = j�j = sin
��

2
; i = 1; . . . ; n

V (bi) = 0; i = 1; . . . ;m
(10)

where�� � �max andbi andai are, respectively, the right half-plane
zeros and poles ofP (s). Then the function

W (s) = �jej
��=2

V (s) (11)

which satisfies the conditions in (5) is the required SS function, and
the resulting compensatorC(s), computed from (7)–(9), stabilizes
the plantP (s), guarantees a phase margin equal to�� < �max, and
has real coefficients.

Proof: First note thatW (s) given in (11) is a function which
satisfies the interpolation conditions in (5) andkW (s)k1 =
kV (s)k1. As shown in [4], if �� < �max, then there exists a strict
Schur function which interpolates the points in (5), hence there exists
an SBR functionV (s) which interpolates the points in (10).

We now show thatW (s) computed in (11) does result in a real
C(s). From (7) we have

Z(s) = e
j��=2 1� je�j��=2V (s)

1 + jej
��=2V (s)

: (12)

Now if this expression forZ(s) is substituted back into (8) one
obtains, after some algebra

T (s) = V (s)
1� sin

��
2
V (s)

sin
��
2

(1� V 2(s))
(13)

which is a real rational function. The expression of the compensator
obtained from (9) is then

C(s) =
V (s) 1� sin

��
2
V (s)

P (s) sin
��
2

� V (s)
: (14)
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Fig. 3. Loop gain Nyquist diagram (Example 1).

Remark 1: If the plant P (s) is not exactly proper, then the
functionW (s) must contain a roll-off term of the type

1

(�s+ 1)k

wherek is the relative degree ofP (s). In this caseW (s) is modified
as follows:

W (s) = �jej
��=2 1

(�s+ 1)k
~V (s)

where the interpolation conditions on the function~V (s) are given as

~V (ai) = (�ai + 1)kj�j; i = 1; . . . ; n;
~V (bi) = 0; i = 1; . . . ;m:

(15)

The parameter� must be chosen small enough to ensure that~V (s) is
an SBR function and that the guaranteed phase margin�� is preserved.

Remark 2: The same proof remains valid when the unstable zeros
and the poles appear in complex conjugate pairs. In this case the
interpolation conditions forV (s) are given by

b1

0

�b1

0

b2

0

�b2

0

. . .

. . .

bq

0

�bq

0

a1

j�j

�a1

j�j

a2

j�j

�a2

j�j

. . .

. . .

ap

j�j

�ap

j�j

the first line of the Fenyves array [2]. With the Nevanlinna–Pick
algorithm [2] we obtain the following expression for the2qth line
of the Fenyves array:

a1


1j�j

�a1

�
1j�j

a2


2j�j

�a2

�
2j�j

. . .

. . .

ap


pj�j

�ap

�
pj�j

where


i =

q

k=1

ai + bk

ai � �bk

ai +�bk
ai � bk

:

Now the interpolation values appear in complex conjugate pair so
that a real interpolation function exists. The zerosbi;�bi are easily

interpolated by multiplying the interpolating function for the unstable
poles by terms of the type

s� bi

s+�bi

s� �bi
s+ bi

:

In the next section, Theorem 2 is used to computereal compensators
for some phase margin design problems.

III. EXAMPLES

Example 1: This example is taken by [4]. In this case the plant is

P (s) =
(s� 1)

(s+ 1)(s� p)
; p =

5

4

and the value of
opt, as computed from [4] is:
opt = j p+1
p�1

j = 9

with �max = 12:7587�. We select the guaranteed phase margin to
be �� = 10� = �

18
. This plant has a simple zero at infinity, hence a

first-order roll-off term of the form 1

�s+1
is required, with� chosen

small enough so that theH1-normW (s) remains less than one. In
this caseW (s) is exactly

W (s) = �1440jej�=36 sin
�

36

(s� 1)

(s+ 1)(4s+ 155)
; � =

4

155

resulting in the controller

C(s) = 360
4s2 + 148:06158s+ 165:93841

4s2 � 1121s� 49 445
:

For this plant the parity interlacing property (p.i.p.) condition is not
satisfied, so that an unstable controller is expected. In particular,
the controller designed above has one unstable pole, so that for
closed-loop stability the Nyquist diagram should encircle the�1
point twice (one unstable pole in the plant and one unstable pole
in the controller). The Nyquist plot shown in Fig. 3 has the correct
number of encirclements. The Bode plots of the loop gain are shown
in Fig. 4 and the computed increasing gain and phase margins are
GM = 0:3972 dB, ~� = 10:23� � ��. Note that in order to meet a
near-optimal phase margin, the Nyquist diagram is distorted in such
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Fig. 4. Loop gain Bode diagram (Example 1).

a way that a very small gain margin results. This implies a very
fragile/nonrobust controller with respect to gain perturbations and
illustrates the robustness and fragility problems that typically result
when a single optimization criterion is used for design.

To show how an arbitrary choice of the Schur function may result
in a complex coefficients compensator for the plant in this example,
consider the following SS functionW (s):

W (s)=�310
(s� 1)

(s+ 1)

�

(�319 + 288ej�=36)s+ 1285� 1440ej�=36

(4s+155)((412+288je�j�=36)s�205�360je�j�=36)

(16)

This SS function interpolates to

W (5=4) = � = �j sin
�

36
ej�=36

W (1) = 0
(17)

as required by the conditions in (5), and has the proper roll-off at
infinity. The compensator computed from thisW (s) is given by

C(s) =
c1s

4 + c2s
3 + c3s

2 + c4s+ c5
c6s4 + c7s3 + c8s2 + c9s+ c10

c1 = (3:514564 + 8:105417j)102

c2 = (1:528751 + 3:010686j)104

c3 = (8:787351 + 5:006403j)104

c4 = (116:6633� 9:382413j)103

c5 = (3:751727� 3:313033j)104

c6 = (1:198356 + 1:886006j)

c7 = (�2:507776� 6:588968j)102

c8 = (�1:326417� 2:880513j)104

c9 = (�6:851272� 1:641024j)104

c10 = (�3:143535 + 2:617595j)104:

Note that the there are no common poles/zeros so that the complexity
of the controller cannot be reduced. When the compensator is
complex, the frequency response does not have the usual symmetry
properties for positive and negative frequencies. Thus, the Nyquist
plot is no longer symmetric about the real axis, but the phase-margin
design will still meet the phase-margin design specifications.

Example 2: Let us consider the following linear plant:

P (s) =
(s� 1)(s� 3)

(s� 2)(s� 4)
: (18)

Note that this plant does not satisfy thep.i.p. [8] and hence cannot be
stabilizable by a stable compensator. The first step in phase margin
design is to evaluate the maximum possible phase margin for the

W (s) = �jej�=3605 sin
�

360
�

(s� 1)(s� 3) �13 + 525 sin2 �
360

s+ 38 + 1050 sin2 �
360

(s+ 1)(s+ 3) �1 + 1025 sin2 �
360

s� 2� 2750 sin2 �
360

C(s) =
�59:42228s4 � 209:75906s3 + 382:15262s2 + 1763:11373s+ 1270:30095

58:89206s4 + 310:11131s3 + 315:26545s2 � 414:70261s� 478:74881
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Fig. 5. Loop gain Nyquist diagram (Example 2).

Fig. 6. Loop gain Bode diagram (Example 2).

given plant. Using theH1 optimization techniques in [4] one obtains
for the given plant
opt = 77:7492 which leads to the maximum
possible phase margin�max = 2 sin�1(1=
opt) = 1:4739�. It is
interesting to note how small the maximum phase margin is for this
particular plant. We select a design value of�� = 1� = �

180
. The SS

function which interpolates the points (5) for this case is given by the
equation shown at the bottom of the previous page. We list the exact

value ofW (s) so that levels of precision in the realization ofC(s)

may be studied. UsingW (s) and the mappings (7)–(9),C(s) is given
by the other equation shown at the bottom of the previous page. The
compensator is, as expected, unstable. For closed-loop stability the
Nyquist plot should encircle the�1 point three times (two unstable
poles in the plant and one in the controller) in the counterclockwise
sense. The Nyquist plot in Fig. 5 verifies that this is the case. Bode
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Fig. 7. Loop gain Nyquist diagram (Example 3).

Fig. 8. Loop gain Bode diagram (Example 3).

plots of the loop gain are shown in Fig. 6. The computed gain and

phase margins areGM = 0:048 94 dB, ~� = 1:043� � ��. The actual

phase margin is a bit larger than the guaranteed design value, but of

course less that the maximum possible value. Trial-and-error phase

margin design would be difficult in this case because an unstable

controller is required. Because of the inherently small phase margin

for this plant, this design is extremelyfragile [6] with respect to any
possible time delays in the controller.

Example 3: The following phase margin design problem is taken
from [7, Example 9.2]. The plant is given by

P (s) =
4

s(s+ 1)(s+ 2)
:
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C(s) =
((s2 + 3s+ 2)(4�2(1 +

p
3)s3 + 12�2(1 +

p
3)s2 + 12�(1 +

p
3)s� 1 +

p
3)

16(1 +
p
3)�(�s+ 1)3(�2s2 + 3�s+ 3)

C(s) =
13824s5 + 3:756 106s4 + 3:43887 108s3 + 1:671109s2 + 2:66172 109s+ 1:33086 109

7:69515 10�2s5 + 41:3549s4 + 9:26032 103s3 + 1:05062 106s2 + 5:94338 107s+ 1:33086 109

The controllerC(s) must achieve a phase margin�� � 50�, with
a DC gain of one, i.e.,C(0) = 1. In [7] this problem is solved
with a simple lag controller. The conditionC(0) = 1 requires the
interpolation conditionT 0(0) = � lims!0

1
sC(s)P (s)

= � 1
2
. The

problem of finding
opt is complicated by the additional condition
on the derivative ofT (s), but it can be shown that
opt = 1, leading
to �max = �. We select a design phase margin much larger than
in [7], but below the maximum value�max; in particular we select
�� = 150� = 5�

6 . The conditionT 0(0) = � 1
2 is not enforced in the

interpolation procedure but is satisfied at the end when an expression
of T (s) with a free parameter is obtained. In this case we can select
W (s)

W (s) = �jej(5�)=12 sin 5�

12

1

(�s+ 1)3

where the constant time� in the roll-off term is any positive real
number. We will use� to meet the derivative interpolation condition.
The expression of the controller, computed from (7)–(9), with variable
� , is given by the equation shown at the top of the page. The condition
C(0) = 1 then yields� = 0:0111645. Finally the controllerC(s)
is given by the other equation shown at the top of the page.

The above controller is stable (p.i.p. is satisfied for this plant). Since
the plant has no poles inside the right half-plane and the controller
is stable, the Nyquist diagram for the compensated system should
have no encirclements of the�1 point for closed-loop stability. This
is verified by the Nyquist plot shown in Fig. 7. Fig. 8 shows Bode
plots for the loop gain of the compensated system. The computed
gain and phase margins areGM = 18:13 dB, ~� = 150:5� � ��. It is
interesting to note that the analytic 150 degree phase margin design
algorithm produced a fifth orderphase-leadcontroller, compared to
the first-order phase-lag design in [7] for a 50-degree phase margin.
As it turns out, it is impossible to get a phase margin greater than
90 degrees for this plant with lag compensation. What is interesting
is that the analytic procedure automatically selected the “right” type
of compensator.

IV. CONCLUSION

We have shown how anonrealinterpolating functionW (s) can be
chosen so that the analytic phase margin design algorithm developed
in [4] can be used to design a compensator withreal coefficients.
While phase margin design is only one approach to robust design, it
is commonly used in practice and is the only robust design approach
discussed in most introductory control texts, where the problem is
generally solved with trial-and-error procedures. A very significant
part of the analytic design algorithm developed in [4] is that a
maximum achievable phase margin is determined for any given plant.

The examples included here illustrate the limitations placed on
phase margin design for given plants. In particular some plants may
allow almost no phase margin at all, and to guarantee closed-loop
stability very complicated Nyquist diagrams may be required. Finally,
the examples illustrate that optimal single-objective design can cause
serious problems in robustness and fragility.
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Correction to “Optimal Control of
Perturbed Linear Static Systems”

Roy Smith and Andy Packard

Abstract—This paper presents a typographical correction to the proof
of Theorem 4 in the above-mentioned paper.

Index Terms—Robust control synthesis, structured singular value.

I. THE CORRECTION

Equation (6)1 should be replaced by the following:

�max(zVA + VB) < 0 (6)

where

VA = V?
P T11
P T12

[P11 P12 ]�

2I 0
0 0

V
T

?

VB = V?
P T21
P T22

[P21 P22 ]�
0 0
0 
2I

V
T

? :
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