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Fig. 9. The searching tree after inputting the same task command for the
second time (with the initial state the same as in the first time).

The desired node picked up by the explanation-based learning
engine is node 28 and the generated searching template issupe-
rior_order([next_to(_, _), on(_, _)]).

When the same task command was inputted for the second time (with
the initial state the same as in the first time), the planned action se-
quence is the same as in the first time, yet the corresponding searching
tree alters, as shown in Fig. 9, where nodes 1–4 and 25 simply corre-
spond to nodes 1, 2, 16, 28, and 49 in Fig. 8, respectively. This time,
however, the explanation-based learning engine fails to generate any
other new searching template, because no desired node on the corre-
sponding searching tree can be found, though there does be a successful
leaf node.

It can be seen that the number of the nodes searched in the second
time decreases almost a half than in the first time and no backtracking
happens. The searching efficiency is greatly increased. The effect of
explanation-based learning is significant.

V. SUMMARY

The main contributions of this paper are as follows:

1) Explanation-based learning has been accurately placed in the tri-
angle of problem solving, i.e., with the angle of searching mech-
anism.

2) A problem formulation has been made for robot action planning
(RAP), which gives in-depth comprehensibility of RAP, espe-
cially that of means-ends analysis searching mechanism.

3) A new learning-based method has been developed for RAP, i.e.,
robot action planning via explanation-based learning (RAPEL),
which is aiming at computer-realized recognition and acquisition
of domain-specific searching heuristics.

4) The overall scheme of RAPEL has been put forward and the
principle of RAPEL has been established, and terms, notations,
grammars and paradigms of Prolog language are directly em-
ployed for the purpose of strictness.

5) Configuration of node has been proposed, by which node growth
can be visually illustrated.

6) Logic chart has been proposed, by which processes of synthe-
sizing action sequences can be visually illustrated.
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Computational Complexity of Determining Resource
Loops in Reentrant Flow Lines

F. L. Lewis, B. G. Horne, and C. T. Abdallah

Abstract—This paper presents a comparison study of the computational
complexity of the general job shop protocol and the more structured flow
line protocol in a flexible manufacturing system. It is shown that the rep-
resentative problem of finding resource invariants is -complete in the
case of the job shop, while in the flow line case it admits a closed form solu-
tion. The importance of correctly selecting part flow and job routing pro-
tocols in flexible manufacturing systems to reduce complexity is thereby
conclusively demonstrated.

I. INTRODUCTION

In a general flexible manufacturing system (FMS) where resources
are shared, a key role in part routing, job selection, and resource as-
signment is played by the FMS controller. Given the same resources of
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machines, robots, fixtures, tooling, and so on, different structures re-
sult under different routing/assignment strategies by the controller. Un-
structured strategies are generally classified as the so-called job shop
organization, while structured protocols result in various sorts of flow
lines, with or without assembly. The importance ofstructurein deter-
mining complexityhas not been rigorously addressed in FMS.

The theory ofNP-completeness [5] potentially provides a compre-
hensive approach for analysis of computational complexity in FMS.
This possibility has not been rigorously explored. Many traditional
scheduling and sequencing problems have been found to be inNP ,
thus it has been necessary to develop heuristics or approximate methods
for analysis and solution. It has been shown, for instance that, even for
the flow line with two processors, scheduling while minimizing the
maximum flow time isNP-complete for both nonpreemptive and pre-
emptive schedules [6]. For the general job shop protocol the situation
is even worse (see, for example, [5, p. 242]). Branch and bound algo-
rithms are generally used in this case. For the flow line, the lot-sizing
problem is polynomial, while for the flow line with assembly it is expo-
nential. The complexity of many problems, including the determination
of the PNp-invariants, has not yet been determined. There is currently
no comprehensive theory that provides a categorization of the com-
plexity of analysis problems for the flow line, assembly line, and job
shop. There is no formal theory describing how to imposestructured
flow and command protocolson an FMS to simplify its complexity.

Petri nets (PN) [13] have been extensively used in the analysis of
manufacturing systems, with quite variable results. Though,ad hocap-
plications abound, PN have a body of theoretical results on liveness,
boundedness, reachability, and so on that make them very useful in
studies of FMS when seriously applied. Applications of PN are found in
[2], [4], and [20]. PN approaches to the design of FMS sequencing/dis-
patching controllers are found in [7], [8], [14], and [19].

The PN incidence matrixW can be used to study structural prop-
erties of FMS, including determination of the siphons [1] and dead-
lock avoidance [11]. However, matrix applications in PN had not been
fully exploited. A complete matrix model for FMS is given in [17]. In
many papers [2], [7], [20], the problem of finding a binary basis for the
nullspace ofW is important, for such a basis defines a special class
of siphons known as thep-invariants or resource loops. Thep-invari-
ants contain important structural information about an FMS, and may
be used for conflict resolution in the dispatching of shared resources in
such a fashion as to avoid deadlock [11]. In this paper we show that it is
possible by judicious means to reveal a special structure of the PN inci-
dence matrix in a very general class of reentrant flow lines (RFL) that
can include assembly operations. This class includes the multipart flow
lines discussed for instance in [9] and [12]. To reveal the importance
of structure in the study of complexityfor RFL, we select the represen-
tative problem of determining thep-invariants. It is shown that for un-
structured job shop protocols this problem isNP-complete, while for
a general class of reentrant flow line protocols it is polynomial. For this
class, an explicit matrix formula is given to compute thep-invariants.
The importance of selecting suitable controller sequencing protocols to
reduce complexity in FMS is thereby shown.

II. COMPLEXITY THEORY OVERVIEW

Until recently, it was felt that decidable problems are practically
solved and thus not very interesting. The introduction of computational
complexity theory has since changed this misconception. Computa-
tional complexity theory is often used to establish the tractability or
intractability of computational problems, and is concerned with the de-
termination of the intrinsic computational difficulty of these problems
[5].

The complexity classP consists of all decision problems that can be
decided in polynomial-time. In practice, such problems can be feasibly
implemented on a real computer. The classEXP consists of those that
can be decided in exponential-time. Such problems can only be run on
a real computer if they are of very small dimension. The complexity
classNP lies in between, consisting of all decision problems that can
be decided algorithmically innondeterministicpolynomial-time. An
algorithm is nondeterministic if it is able to choose or guess a sequence
of choices that will lead to a solution, without having to systematically
explore all possibilities. This model of computation is not realizable,
but it is of theoretical importance. In practice, problems inNP are
those for which a candidate solution can be verified to be a valid solu-
tion in polynomial-time, but the best known algorithms to find such a
solution run in exponential time.

Many practical problems belong toNP and it is as of yet unknown
whetherP = NP . In other words, these two complexity classes form
an important boundary between the tractable and intractable problems.
A problem is said to beNP-hard if it is as hard as any problem in
NP . Thus, ifP 6= NP , theNP-hard problems can only admit deter-
ministic solutions that take an unreasonable (i.e., exponential) amount
of time, and they require (unattainable) nondeterminism in order to
achieve reasonable (i.e., polynomial) running times.

The central idea used to demonstrateNP-hardness evolves around
theNP-complete problems. A problem is said to beNP-complete
if every decision problem inNP is polynomial-time reducible to it.
This means that theNP-complete problems are as hard as any decision
problem inNP . Given two decision problems�1 and�2, �1 is said
to be polynomial-time reducible to�2 (written as�1 �p �2), if there
exists a polynomial time algorithmR which transforms every inputx
for �1 into an equivalent inputR(x) for �2. By equivalent we mean
that the answer produced by�2 on inputR(x) is always the same as the
answer�1 produces on inputx. Thus, any algorithm which solves�2

in polynomial time can be used to solve�1 on inputx in polynomial
time by simply computingR(x), and then running�2. In order to show
that a particular decision problem�2 isNP-complete, one starts with
a problem�1 which is known to beNP-complete, and shows that
�1 �p �2. This proves that�2 isNP-hard. To complete the proof that
�2 isNP-complete, it must be demonstrated that a candidate solution
can be verified in polynomial time.

In this paper, we use the ONE-IN-3SAT problem which is known to be
NP-complete [5] in order to show that solving a certain problem for
the general job shop isNP-complete. We then use the special struc-
ture of the reentrant flow line problem to show that the same problem
can be efficiently obtained for the flow line. This highlights the impor-
tance ofstructurein flexible manufacturing systems. The ONE-IN-3SAT

problem is as follows:
ONE-IN-3SAT:
Instance: Given a setU of variables, a collectionC of clauses over

U such that eachc 2 C hasjcj = 3.
Question: Is there a truth assignment forU such that each clause in

C has exactly one true literal?
Example 1: LetU = fa; b; c; dg andC = fabc; abd; bcdg. Then

a solution isa = b = true andc = d = false.

III. STRUCTURE ANDMODELING OFREENTRANT FLOW LINES (RFL)

In this section we discuss flexible manufacturing systems with sev-
eral sorts of structures, including the reentrant flow line (RFL), the as-
sembly line, and the job shop. The importance ofstructure and protocol
in flexible manufacturing systems is highlighted. Some Petri net mod-
eling techniques are introduced.
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Fig. 1. RFL with four machines and two parts.

Fig. 2. PN representation of the reentrant flow line.

A. Manufacturing System Structures

The physical portion of a flexible manufacturing system (FMS) is
comprised of itsresources:the set of machines or work stations, the
automated material handling system, and the distributed buffers. Given
the sameresource facilities in the FMS, different sequencing algo-
rithms by the FMS controller producedifferent flow/protocol struc-
tures,including the reentrant flow line, the assembly line, and the gen-
eral job shop protocol. A major issue is thatthe structure imposed by
the controller should avoid or reduceNP complexity problems.

Formally, a manufacturing facility is a setR = frig of resources
(e.g., machines, tools, fixtures, robots, transport devices, etc.) each of
which has a distinct function. Eachri can denote apool of more than
one machine that performs the same function. The resources operate
on parts; parts of thejth type are denoted�j . A job sequence for part
type�j is a sequence ofPj jobsJj = fJ1j ; J2j ; � � � ; JP jg required
to produce a finished product. The sequence of jobs may be determined
from a task decomposition, bill of materials, assembly tree, or prece-
dence matrix [16]. If each job is performed on a single part and delivers
a single part there is said to beno assembly.

If a single resource is needed for each job, for instance, this corre-
sponds to a pairing(Jkj ; ri) of thekth job for part�j with a resource
ri. The ordering of the jobs for a given part type can be either fixed
or variable. Likewise, the resources assigned to each job can be either
fixed or variable.

In the generaljob shopthe sequence of jobs is not fixed, or the assign-
ment of resources to the jobs is not fixed. The effect is thatpart routing
decisionsmust be made during processing. In theflow linethe sequence
of jobs for each part type is fixed and the assignment of resources to
the jobs is fixed. The result is that each part type visits the resources
in the same sequence, though different part types may have different

sequences. The sequence in which part type�j visits the resources in a
flow line will be called thejth part path. Once the resources have been
assigned to jobs, this resource sequence is defined by the job sequence
Jj , which is therefore used to denote thejth part path.

A flow line is said toreentrantif any part type revisits the same re-
source more than once in its job sequence [9], [12]. This occurs if the
same resource is assigned to different jobs in the part’s sequence. A
sample reentrant flow line is given in Fig. 1. In this figure,R1 andR2
could be transport robots, for instance, that move the parts between cer-
tain jobs;B1; B2 could be buffers; andM1–M4 could be machines.
Thus, the resources may include machines, robots, buffers, transport
devices, fixtures, tools, and so on.

B. Petri Net Representation of RFL

A Petri net (PN) is a bipartite (e.g., having two sorts of nodes) di-
graph described by(P; T ; I; O), whereP is a set ofplaces, T is a
set oftransitions, I is a set of (input) arcs from places to transitions,
andO is a set of (output) arcs from transitions to places. In our appli-
cation, the PN places represent manufacturing resources and jobs, and
the transitions represent decisions or rules for resource assignment/re-
lease and starting jobs. The PN representation for the reentrant flow
line in Fig. 1 is shown in Fig. 2, where the places are drawn as circles
and the transitions as bars. The flow line structure is evident in the par-
allel part type paths,interconnected byshared resource places(e.g.,
B1; M2) that service jobs for several part types. Note that along one
part path, some resources (e.g.,R1; R2) are used more than once, so
that this flow line is reentrant. Each part path in the figure has a set of
palletsdenoted byPA1; PA2; one pallet is needed to hold each part
entering the cell. Places ending inP , all on the job paths, correspond
to jobs in progress. Places ending inA correspond to the availability
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Fig. 3. Petri net of reentrant flow line with assembly.

of resources. In the reentrant flow line, note that all transitions occur
along part paths, and exactly one transition feeds into its succeeding
job place.

It is common in PN theory to represent the sets of arcsI andO
in the PN description(P; T ; I; O) as matrices. Thus, elementIij of
matrix I is equal to 1 if placej is an input to transitioni. Element
Oij of matrix O is equal to 1 if placej is an output of transitioni.
Otherwise the elements ofI; O are set to 0. MatrixI is called theinput
incidence matrix, andO theoutput incidence matrix. Both matrices are
considered as maps fromP to T . Then, thePN incidence matrixis
defined as

W = O � I: (1)

A column vectorp indexed by the set of all placesP is called the PN
p-vector (place vector). ThePN marking vectoris the marking vector
m(p) defined as follows.

Definition 1—Marking and Support:Given a PN, the PN marking
is the number of tokens in each place in the net. Given a placep 2 P ,
the marking ofp; m(p), is the number of tokens inp. Given a vector
of placesp = [p1 p2 � � � pq]

T , the markingm(p) is the vector
m(p) = [m(p1) m(p2) � � � m(pq)]

T of markings of the individual
places. The support of a vector is the set of its elements having nonzero
values.

It is common to simplify the notation so thatm(t) denotes the
marking vectorm(p) at time t. Then, in terms of the PN incidence
matrix, one can write thePN marking transition equation

m(t2) = m(t1) +W
T
� = m(t1) + (O � I)T � (2)

wherem(t) is the PN marking vector at timet; t1 < t2, and� is a
vector denoting which transitions have fired between timest1 andt2;
element�i = ni if the ith transition has firedni times in the interval.

Central to the study of resource allocation in RFL are the following
notions.

Definition 2—p-Invariant and Resource Loop:A p-invariant is a
place vectorp having elements of zeros and ones that is in the nullspace
of W , that is

Wp = 0: (3)

The set of places corresponding to the support ofp is known as a re-
source loop, also loosely called ap-invariant.

The importance ofp-invariants may be understood by noting that,
beginning with (2), for anyp-invariantp one has

p
T
m(t2) = p

T
m(t1) + p

T
W

T
� = p

T
m(t1): (4)

Noting that premultiplication bypT simply sums up the tokens in the
positions ofm(�) corresponding to the support ofp, this is seen to
be a statement that the total number of tokens in positions ofm(�)
corresponding to the support ofp is conserved. That is thep-invariants
define those loops in the PN within which the numbers of tokens are
conserved. These conservative loops defined by thep-invariants are the
resource loops.

The complete set ofp-invariants of a PN, which defines the resource
loops, gives a great deal of structural information in a RFL. They have
been extensively studied in work by Desrochers [2], DiCesareet al.[7],
Zhouet al. [20], and elsewhere. A common requirement in “well-de-
fined” PN is that each job should be contained in a resource loop, i.e.,
the PN should becoveredby p-invariants. They provide the basis for
several FMS control techniques that involve dispatching of shared re-
sources. In [11] it is shown that they provide the basis for deadlock
avoidance algorithms. In [1] is given a complex algorithm for deter-
miningp-invariants. In Section V we shall give an explicit matrix for-
mula forp-invariants for a large class of reentrant flow lines.

IV. COMPUTATIONAL COMPLEXITY OF FINDING THE p-INVARIANTS IN

THE JOB SHOP

To find thep-invariants it is necessary to solve (3), determining a
basis for the nullspace ofW that has only ones and zeros. In this sec-
tion, we show that finding such a binary basis is anNP-complete
problem for the general job shop structure. Then, in Section V, it is
shown that for the reentrant flow line, with or without assembly, an an-
alytic solution can be given for the problem.

Theorem 1: The problem of finding a binary basis forW in the
general job shop isNP-complete.

Proof: In order to solve the general job shop problem, we need
to find a basis of the nullspace of the incidence matrixW . SinceW
contains coefficientswij 2 f�1; +1; 0g and since a meaningful basis
of its nullspace will have vectorsp whose entriespi also belong to
f0; +1g, the problem is equivalent to findingpi such that

i
wijpi =

0; 8 j. Note however, that the zero vectorpi = 0; 8 i should be
excluded. We shall then define the following problem:

MATRIX BASIS:
Instance: An n � 2n matrixA 6= 0 with entries inf�1; 0; 1g.
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Question: Does there exist a vectorx 6= 0 with entries inf0; 1g
such thatAx = 0?and prove that MATRIX BASIS isNP-complete by
transformation from ONE-IN-3SAT.

We begin with a proof forA of sizen�m and then later show how
to augment the matrix to make it of sizen � 2n.

Letn = jU j+ jCj andm = 2jU j+1, whereU andC are the sets of
variables and clauses in the instance of ONE-IN-3SAT. The columns of
A (and thus the components of the vectorx) will correspond to com-
plemented and uncomplemented assignments of thejU j literals and an
auxiliary variablez, i.e.,

x = [x1 x1 x2 x2 � � � xn xn z]0:

A valid solution vector will correspond to each component ofx being
equal to 0 or 1 depending on whether the corresponding literal is true
or false. All nontrivial solutions will havez = 1.

The first jU j rows ofA are used to insure that the solution vector is
a valid truth assignment to the literals, i.e., so that value assigned toxi
will be the logical complement of the value assigned toxi. Specifically,
the first jU j rows are configured as,

ai; j =

1; j 2 2i� 1; 2i

�1; j = 2jU j+ 1

0; otherwise.

The remainingjCj rows are used to satisfy the requirement that exactly
one literal in each clause is true. Specifically, denote a literal by~xi (i.e.,
~xi 2 fxi; xig), and denote theith clause byci = ~xp ~xq ~xr . Then set

ajUj+i;j

=

1;

1;

� 1;

0;

j = 2s� 1

j = 2s

j = 2jU j+ 1

otherwise:

~xs = xs

~xs = ~xs

s 2 fpi; qi; rig

s 2 fpi; qi; rig

Every solution besides the trivial solution must havez = 1 since
if z = 0 then the firstjU j rows ofA will guarantee that every other
entry will also be equal to zero. The same rows will guarantee that for
nontrivial solutions exactly one ofxi andxi will be equal to one. The
last jCj rows ofA will only be satisfied by nontrivial solutions such
that exactly one literal of each clause is true.

The first part of the proof shows that the theorem holds for a variety
of values ofn andm. However, it is not directly applicable to the case
where2n = m since this would imply that2(jU j+ jCj) = 2jU j = 1,
or 2jCj = 1. Since this can never be achieved by direct transformation
from ONE-IN-3SAT, we modifyA by adding one additional row and
2jCj+ 1 additional columns, i.e., construct the augmented matrix

A
0 =

A B

C D

whereB andC are matrices of zeros of sizes(jU j+ jCj)� (2jCj+1)
and1 � (2jU j + 1), respectively, andD is a matrix of ones of size
1� (2jCj+1). The last row insures that the last2jCj+1 components
of the solution vector must be equal to zero, but these variables in no
way interfere with the construction above. The augmented matrix is of
sizen � 2n wheren = jU j + jCj + 1.

The transformation is easily done in time linear in the size of the
matrix, which is quadratic injU j andjCj. Therefore, we have shown

that MATRIX BASIS is NP-hard. On the other hand, one can easily
verify the existence ofpi as a member of the nullspace ofW which
then proves that the problem isNP-complete.

V. COMPUTATIONAL COMPLEXITY OF FINDING THE p-INVARIANTS

IN THE FLOW LINE

Though finding thep-invariants in a general job shop protocol is
NP-complete, in this section a special job flow protocol is imposed
that allows one to give an analytical solution to this problem, so that
the complexity is polynomial. This protocol corresponds to a large class
of reentrant flow lines with or without assembly, including those with
multiple part types. Included particularly are all the reentrant flow lines
without assembly treated in references such as [9] and [12]. The im-
portance of structure in an FMS is thereby shown in regards to com-
putational complexity, so that care should be taken in selecting job se-
quencing and routing strategies in FMS.

A. Structure of the Reentrant Flow Line

In the reentrant flow line with or without assembly, e.g., Fig. 2, de-
note the set of jobs for part typej asJj and the set of all the jobs as
J =

j
Jj . The setJj will also be used to denote thejth part path. It

is noted that the part input placesPI and part output placesPO are not
included as jobs (they are not important for determining the structure
of RFL). Places that occur off the part paths represent the availability of
resources; denote byR the set of all such places. The set of PN places
is given byP = J [R, the set of resources plus the set of jobs. Note
that all transitions occur along the part paths.

Partition the PN marking vectorp as

p =
v

r
(5)

wherev is the vector of places corresponding to the jobsJ andr is
the vector of places corresponding to the resourcesR [2], [17]. Then,
referring to thep-invariant definition (3), the PN incidence matrix has
the compatible structure

W = [Wv Wr] � S
T � F = [ST

v � Fv S
T
r � Fr] (6)

whereST � [ST
v ST

r ]
T andF � [Fv Fr]. Comparing this equation

with (1) one sees that the output incidence matrix isO = [ST
v ST

r ]
and the input incidence matrix isI = [Fv Fr]. MatricesST

v ; S
T
r are

the output incidence matrices of the jobs and resources, respectively,
andFv; Fr are the input incidence matrices of the jobs and resources,
respectively.

In the RFL, matricesFv; Fr have rows corresponding to the tran-
sitions that are inputs to the succeeding job. MatrixFv has columns
corresponding to jobs while matrixFr has columns corresponding to
resources. Therefore, MatrixFv is the well-known Steward sequencing
matrix [16], assembly tree, or the bill of materials (BOM) [3] in manu-
facturing; it has element(i; j) = 1 if job j is an immediate prerequisite
for job i. Matrix Fr is the resource requirements matrix used in [10];
it has element(i; j) = 1 if resourcej is required for jobi.

An example of these constructions is provided by the reentrant flow
line in Fig. 3. This flowline has an assembly operation as two part paths
join to form one at transitionx4, corresponding to the assembly of parts
b andc to form subassemblyd. Define the job vector asv = [abcdef ]T ,
the resource vector asr = [R1A F1A B1A B2A PA M1A]T , and
the PN place vector as (5). Define the vector of transitionsx as having
components ofxi; i = 1; 7. Then, by inspection one determines the
following matrices. The partitioning shown corresponds to the two part
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paths, a partial path with two transitions and a complete path with five
transitions

Sv =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

;

Sr =

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 1 0 0 1

(7)

Fv =

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

;

Fr =

0 0 1 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0

: (8)

Using(6) one now has the PN incidence matrix in (9), shown at the
bottom of the page, where the partitioning now distinguishes the job
places from the resource places.

1) Definition of a General Class of Reentrant Flow Lines:The sub-
sequent analysis deals with the broad class of reentrant flow lines now
defined. This class is more general than the one in [4] as it allows as-
sembly operations as well as the use of more than one resource per job
(e.g., tool, fixture, and machine) as in [7]. Included also are all the reen-
trant flow lines without assembly treated in references such as [9] and
[12]. Some preliminary definitions are needed.

Definition 3—Complete and Partial Part Paths:Given a reentrant
flow line with assembly, define a complete part path as one that termi-
nates in an output product (e.g., a PO place in the PN), and a partial
part path as one that merges with another part path in an assembly op-
eration.

Note that each complete part path terminates in an extra transition
that feeds the part output place and is required to release the pallets, if
any are used in that corresponding part path.

It is important to order the job places correctly to obtain a lower tri-
angular matrixFv [18], for then the sequencing of the jobs is causal.
A causal ordering is also important in taking advantage of the special
structure of matricesFv ; Fr; Sv; Sr to reduce complexity in the proof
of Theorem 2. To obtain a causal ordering of the jobs, number the job
places sequentially from left to right along each single part path. Sup-
pose part pathJ1 is a complete path, with a partial part pathJ2 merging
into pathJ1 at the assembly point, represented by a transition on that
path. In this situation, one may number the jobs of partial pathJ2 from
left to right, stopping at the last job prior to the assembly transition.
Then, return to the beginning of pathJ1, picking up the place ordering
by numbering the job places of pathJ1 from left to right. The tran-
sitions should be numbered corresponding to the job places they feed
into.

Definition 4—Dot Notation for Input and Output Sets of a
Node: Given a transitiont 2 T , define by�t the set of places that
are inputs tot, and byt� the set of places that are outputs oft. Given
a placep 2 P , define by�p the set of transitions that are inputs top,
and byp� the set of transitions that are outputs ofp. Given a set of
nodesS = fvig (either places or transitions), define�S = f�vig and
S� = fvi�g.

Definition 5—Pallet Places:Let the set of transitions along thejth
part path bexj1; xj2; � � � ; xjL . Then, if part pathJj is complete, it
may have a pallet placepj0. If so, it should be selected such thatpj0 2
�xj1; pj0 =2 �xj`; ` 6= 1, andpj0 2 xjL �; pj0 =2 xj`�; ` 6= Lj .
That is, if present, pallets are used for all jobs on a complete part path.

Definition 6—Set of Jobs of a Given Resource:Given a reentrant
flow line with jobsJ and resourcesR, define the jobs associated with
resourcer 2 R as

J(r) = r � � \ J : (10)

In terms of these constructions, the class of RFL studied here is given
as follows. Denote the set of resources minus the pallets asR

�0 =
R � fpj0g.

Definition 7—Definition of a Class of Reentrant Flow Lines:Define
the class of reentrant flow lines with or without assembly as those sat-
isfying the following properties.

1) For all placesp 2 P , one has�p \ p� = � the empty set. (No
self-loops.)

2) For each part pathJj , the first transition satisfiesxj1 �\R = �
and, if the path is complete the last transition satisfies�xjL \
R = �. (Each part path has a well-defined beginning and end.)

3) For each resourcer 2 R
�0, one hasr 2 p � � \ R for all

p 2 J(r) = r��\J . (Unity job duration—each job is described
by only one job place along the part path.)

4) For all placesp 2 J , one has��p\R 6= �. (Every job requires
at least one resource.)

W =

1 0 0 0 0 0 0 0 �1 0 �1 0

�1 1 0 0 0 0 0 0 1 0 0 �1

0 0 1 0 0 0 0 �1 0 0 0 0

0 �1 �1 1 0 0 �1 1 0 0 0 1

0 0 0 �1 1 0 1 0 0 �1 0 0

0 0 0 0 �1 1 0 0 0 1 0 �1

0 0 0 0 0 �1 0 0 0 0 1 1

(9)
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2) Special Form of the Incidence Matrices:The reentrant flow line
definition and lemma mean that the PN matrices in (6) have a particular
form. Refer to (7)–(9) in the following discussion. MatricesFv ; ST

v

consist of possibly nonsquare diagonal blocks, one per part path. InST

v

these are identity matrices with, in the case of complete part paths, an
appended bottom row of zeros. InFv these are identity matrices with,
in the case of complete paths, an appended top row of zeros. If there
is assembly there will be some 1’s inFv below the diagonal blocks,
where a 1 in element(i; j) means that placej is the last place in a
partial part path and joins transitioni in another part path.

MatricesFr; ST

r are related as follows. If theith transition is not the
last transition in a partial part path, and there is an entry of 1 in position
(i; j) of Fr , meaning resourcej is committed at transitioni, then there
is an entry of 1 in position(i+1; j) of ST

r , meaning that the resource
is released at the next transition. If theith transition is the last transition
in a partial part path, and there is an entry of 1 in position(i; j) of Fr ,
then there is an entry of 1 in position(k; j) of ST

r , meaning that the
resource is released at the assembly transitionk.

This structure results in a particularly convenient form of the PN
incidence matrixW = [ST

v � Fv ST

r � Fr] � [Wv Wr]. Block
Wv has diagonal blocks having 1’s on the diagonal and−1’s on the
subdiagonal, with some−1’s below these blocks in the case of assembly
operations. In each column, matrixWr has a−1 immediately followed
by a 1, except in the case of assembly where the occurrence of the
following 1 is shifted down to the assembly transition. In the case of
shared resources, there is more than one−1, 1 pair in the column. In
columns corresponding to pallets, the 1 occurs at the beginning of the
associated diagonal block ofWv and the−1 at its end.

B. Algorithm for Computation of thep-Invariants

For the reentrant flow line, an algorithm for determining all thep-in-
variants in a polynomial number of operations is given by the following
theorem.

Theorem 2—Computation of a Set of Independentp-Invariants: Let
there be given the PN matrices (6) for a flow line satisfying Defini-
tion 7, with places in the job vectorv ordered in the causal ordering
specified in Section V-A. Form matriceŝFv; F̂r by deleting the rows
of Fv; Fr corresponding to the extra terminating transitions in each
complete part path. Form matriceŝSv; Ŝr by deleting the columns of
Sv; Sr corresponding to the extra terminating transitions in each com-
plete part path. Then, the complete set ofp-invariants (resource loops)
is given by the columns of the matrix

P =
�(ŜT

v � F̂v)
�1(ŜT

r � F̂r)

I
(11)

whereI is the identity matrix.
Proof: Thep-invariants are defined using (3) whereW is given

by (6) and, for the reentrant flow line,Wv; Wr have the special form
noted in Section V-A2. This shows that thep-invariants are defined by

[Wv Wr]
v

r
= 0;

with v a vector of job places andr a vector of resource places, or
Wvv = �Wrr.

To construct a special left inverse ofWv to solve this equation for
v, delete the extra last transitions in the complete part paths to define
Ŵ = ŜT � F̂ = [ŜT

v � F̂v ŜT

r � F̂r] � [Ŵv Ŵr]. This makes
matrixŴv square. This is allowed as the deleted rows ofWv are in the
row space of the remaining rows. Then, thep-invariants are defined by
Ŵvv = �Ŵrr so thatv = �Ŵ�1

v Ŵrr for anyr. To obtain a basis
for nullspaceW , setr = I, the identity, resulting in (11).

It is required now to show that the resultingv is binary. According
to the discussion in Section V-A2 on the special structure of the DE
matrices,Ŵv is lower block triangular with blocks on the diagonal
corresponding to each part path and having the form

1 0 0 0

�1 1 0 0

0 �1 1 0

0 0 �1 1

:

The inverse of such a block is

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

(a)

which appears as the corresponding diagonal block ofŴ�1

v . In the
case of assembly, there are some entries inŴ�1

v below these diagonal
blocks. Specifically, if there is a subdiagonal entry of−1 in position
(i; j) of Wv the meaning is that there is a partial part pathJ1 whose
last placej feeds into an assembly transitioni in a part pathJ2. In
this event, the lower off-diagonal block corresponding to the diagonal
blocksJ1 andJ2 [e.g., block(J2; J1)] is zero, but filled with 1’s on
rows i and below.

Now one must turn to the structure of�Ŵr . Since resources are al-
ways committed prior to their release, and all jobs have unity duration,
the entries in any column of�Ŵr consist in the case of no assembly
of 1’s followed immediately by−1’s. It is easy to see that such entries
multiplied by blocks such as (a) always result in elements of 0 or 1 in
v. In the case of an assembly with partial part pathJ1 feeding into part
pathJ2, an entry of 1 on the row corresponding to the last transition of
partial pathJ1 is followed in any columnj by a � 1 in row i, where
transitioni is the assembly transition in pathJ2. However, this corre-
sponds to the beginning of the fill of 1’s in block(J2; J1) of Ŵ�1

v ,
and henceŴ�1

v Ŵr can be seen to yield only entries of 0 or 1 inv.
Using the formula in the theorem allows one to compute mathemat-

ically the resource loops for very large flow lines where it is very dif-
ficult to obtain any results by inspection.

VI. CONCLUSION

The resource loops orp-invariants of a reentrant flow line yield im-
portant information useful in job sequencing control and in assignment
of shared resources to avoid deadlock. They are determined by finding
a binary basis for the nullspace of a certain matrix. We have shown by
reduction from the ONE-IN-3SAT problem that finding a binary basis
for the nullspace of thep-invariant matrix isNP-complete in the gen-
eral job shop problem. For a large class of reentrant flow lines with
assembly, however, we exhibited a closed-form solution for a binary
basis. The importance of correctly selecting part flow and job routing
protocols in flexible manufacturing systems is thereby conclusively
demonstrated.

REFERENCES

[1] E. R. Boer and T. Murata, “Generating basis siphons and traps of petri
nets using the sign incidence matrix,”IEEE Trans. Circuits Syst., vol.
41, pp. 266–271, Apr. 1994.

[2] A. A. Desrochers,Modeling and Control of Automated Manufacturing
Systems. Los Alamitos, CA: IEEE Computer Society Press, 1990.

[3] E. A. Elsayed and T. O. Boucher,Analysis and Control of Production
Systems, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[4] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based dead-
lock prevention policy for flexible manufacturing systems,”IEEE Trans.
Robot. Automat., vol. 11, pp. 173–184, Apr. 1995.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 2, MARCH 2000 229

[5] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory ofNP-Completeness. San Francisco, CA: Freeman,
1979.

[6] S. C. Graves, “A review of production scheduling,”Oper. Res., vol. 29,
pp. 646–675, Aug. 1981.

[7] M. D. Jeng and F. DiCesare, “Synthesis using resource control nets for
modeling shared-resource systems,”IEEE Trans. Robot. Automat., vol.
11, pp. 317–327, June 1995.

[8] B. H. Krogh and L. E. Holloway, “Synthesis of feedback control logic
for discrete manufacturing systems,”Automatica, vol. 27, no. 4, pp.
641–651, July 1991.

[9] P. R. Kumar and S. P. Meyn, “Stability of queueing networks and sched-
uling policies,” in Proc. IEEE Conf. Decision Contr., Dec. 1993, pp.
2730–2735.

[10] A. Kusiak, “Intelligent scheduling of automated machining systems,”
in Intelligent Design and Manufacturing, A. Kusiak, Ed. New York:
Wiley, 1992.

[11] F. L. Lewis, A. Gürel, S. Bogdan, A. Doganalp, and O. C. Pastravanu,
“Analysis of deadlock and circular waits using a matrix model for flex-
ible manufacturing systems,” Automatica, to be published.

[12] S. H. Lu and P. R. Kumar, “Distributed scheduling based on due dates
and buffer priorities,”IEEE Trans. Automat. Control, vol. 36, no. 12, pp.
1406–1416, Dec. 1991.

[13] T. Murata, “Petri nets: Properties, analysis and applications,”Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[14] T. Murata, N. Komoda, K. Matsumoto, and K. Haruna, “A Petri net-
based controller for flexible and maintainable sequence control and its
applications in factory automation,”IEEE Trans. Ind. Electron., vol.
IE-33, pp. 1–8, Feb. 1986.

[15] R. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proc. IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[16] D. V. Steward, “On an approach to techniques for the analysis of the
structure of large systems of equations,”SIAM Rev., vol. 4, no. 4, pp.
321–342, Oct. 1962.

[17] D. Tacconi and F. L. Lewis, “A new matrix model for discrete event
systems,”IEEE Contr. Syst. Mag., vol. 17, pp. 62–71, Oct. 1997.

[18] J. N. Warfield, “Binary matrices in system modeling,”IEEE Trans. Syst.,
Man, Cybern., vol. SMC-3, pp. 441–449, Sept. 1973.

[19] K. Y. Xing, B. S. Hu, and X. C. Chen, “Deadlock avoidance policy for
Petri net modeling of flexible manufacturing systems with shared re-
sources,”IEEE Trans. Robot. Automat., vol. RA-41, pp. 289–295, 1996.

[20] M.-C. Zhou, F. DiCesare, and A. D. Desrochers, “A hybrid method-
ology for synthesis of petri net models for manufacturing systems,”
IEEE Trans. Robot. Automat., vol. 8, pp. 350–361, June 1992.


