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Abstract: This study investigates the problem of controller design for systems with uncertain sampling rates.
The system is controlled through a communication network. The sampling period, within a given interval, is
assumed to be time-varying and a simplified framework for the network-induced delay is considered. The
overall system is thus described by an uncertain discrete-time model with time-varying parameters inside a
polytope whose vertices are obtained by means of the Cayley–Hamilton theorem. A digital robust controller
that minimises an upper bound to the H1 performance of the closed-loop networked control system (NCS) is
determined. The design conditions rely on a particular parameter-dependent Lyapunov function and are
expressed as bilinear matrix inequalities (BMIs) in terms of extra matrix variables, which may be explored in
the search for a better system behaviour. Numerical examples illustrate the results.
1 Introduction
The control community has struggled for many decades to
find solutions to problems concerned with the perfect
operation of dynamical systems immersed in hostile
environments. There is no denying that it is wise to seek
better characterisations of model uncertainties, to guarantee
not only stability but also robustness against practical
disturbances and perturbations. Within this framework,
networked control system (NCS) architecture has received
considerable recent attention.

Technological advances have enabled the extensive use of
communication channels in the control of dynamic systems
[1, 2]. Using a real-time network to exchange information
among control system components (sensors, actuators,
controllers, and so on), NCSs are a good alternative to
implementing distributed control and interconnected
systems. To illustrate the usefulness of NCSs one can cite
the following benefits: reduced system wiring, plug and
play devices and ease of system diagnosis and maintenance
[2]. Unfortunately there are also some drawbacks: systems
with loops closed over communication networks become
complex and require sophisticated control techniques.
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Among the main issues arising in NCSs deserving special
attention are network-induced delay, packet dropouts,
multiple-packet transmission and bandwidth requirements.

Network-induced delays occur whenever data are
exchanged through a communication channel and, in
general, can be broken into three parts: time delays at the
source node, on the network channel, and at the
destination node [3]. As pointed out in [2], their nature is
related to the medium access control (MAC) protocol and
may be constant, time varying or random. Packet dropouts
may occur whenever more than one node tries to transmit
simultaneously, leading to a message collision, or because
of node failures. Although retransmission is an option,
there are some cases where it may be a disadvantage or
even impossible. Multiple-packet instead of single-packet
transmission may be needed for many reasons, as, for
instance, bandwidth and packet size constraints, which in
some sense increase the chances of packet dropouts and
network-induced delays. Bandwidth usage has a direct
impact on system stability and performance. From the
control point of view, it is known that a faster sampling
rate is required to guarantee that the behaviour of sampled
data models approximates that of continuous-time systems.
IET Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 50–60
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In NCSs this implies a high network load and consequently
in larger bandwidth usage.

The study of control strategies to overcome these difficulties
has received considerable recent attention [4–10]. Lyapunov
theory, which has been one of the main tools for dealing with
the stability analysis and synthesis of controllers, has begun to
be used in the NCS framework. Recent works include [11],
where a feedback controller is constructed for a discrete-time
Markovian jump system with random delays via a set of linear
matrix inequality (LMI) conditions; [12], where the control
problem is solved for the multipoint-packet system using H2

optimisation techniques; [13], where stabilisation of an NCS
is achieved by means of a packet-loss dependent Lyapunov
function; and [14], where a Lyapunov–Krasovskii functional
is used to design a state feedback controller for a time-delay
sampled system. As can be seen from these works, much
effort has been made to bring together advances in control
theory and the benefits of communication networks.

Depending on the system to be controlled, some networks
may be more suitable than others. For instance, Ethernet-
based network solutions may be more appropriate for
NCSs operating at low network loads, since in this case the
induced time delay is very small, whereas ControlNet
network solutions equipped with a token bus protocol
perform well at high network loads when the percentage of
packets discarded is at issue, as discussed in [3]. It is
important to point out that control strategies based on a
simplified framework, such as a constant delay or even zero
delay, may display reliable behaviour when applied in
specific cases. In any case, a controller design method that
takes into account all the characteristics of a network which
impact system stability still remains a challenge.

This paper addresses the design of robust controllers to
stabilise NCSs subject to time-varying sampling rates. The
stability of this type of system is important within the NCS
framework, especially in the context of dynamic bandwidth
allocation and bandwidth usage control. A simplified
framework for the networked-induced delay is assumed.
The uncertain sampling period is taken to lie inside a
known interval. The sampled data system is represented by
an uncertain discrete-time linear model with time-varying
parameters lying inside a polytope whose vertices are
determined through the Cayley–Hamilton theorem,
without using approximations or truncation. The proposed
approach complements and extends in some sense the
results of [6, 8] with respect to two aspects: index of
performance and the stability of sampled data systems with
time-varying sampling periods. Specifically, the stability
conditions of the closed-loop system are certified by a
parameter-dependent Lyapunov function and the
robustness of the controller by an H1 guaranteed cost, as
proposed in the preliminary version of this paper [15].

An improved strategy is used in which a more general
parameter-dependent Lyapunov function is applied to
Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 50–60
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provide less conservative stability conditions. As shown in
[16, 17], this class of path-dependent Lyapunov functions
can provide necessary and sufficient conditions for robust
stability analysis of arbitrarily time-varying discrete-time
systems. Extra matrix variables are introduced in the
bounded real lemma conditions, producing design
conditions that are expressed in terms of bilinear matrix
inequalities (BMIs). A robust memory controller is then
obtained by the solution of an optimisation problem that
minimises an upper bound to the H1 index of performance
subject to a finite number of BMI constraints formulated
only in terms of the vertices of a polytope. As illustrated by
means of numerical examples, the use of BMIs could prove
interesting in the search for better NCS performance.
Furthermore, the conditions can be reduced to a set of
LMIs by a convenient choice of the extra variables. At each
step of the algorithm, a convex optimisation problem with
LMI constraints is solved, providing non-increasing values
for the bounds on the H1 index of performance. Even
when no communication channel is considered, the
proposed approach improves some of the results in the
literature concerned with the robust control of time-varying
discrete-time systems, for instance, those in [18, 19].

2 Preliminaries and problem
statement
The NCS model considered is described in Fig. 1.

The continuous-time plant is given by the following
equations, for t � 0

_x(t) ¼ Ax(t)þ Bu(t � t)

y(t) ¼ Cx(t)þDu(t)þDd u(t � t)

x(0) ¼ 0, u(q) ¼ 0, q [ {�t, 0}

(1)

where t represents the network-induced time delay,
x(t) [ Rn is the state space vector, u(t) [ Rm is the control

Figure 1 NCS model
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signal and y(t) [ Rq is the output. All matrices are real, with
appropriate dimensions.

The total networked-induced delay t is broken into two
parts: the delay that occurs when data are transmitted from
the sensor to the controller tsc and the delay when the data
are transmitted from the controller to the actuator tca. As
mentioned in [2], the delay due to computations in the
controller can be modelled into either tsc or tca. Note
that the delays are not being used to model network
scheduling. Depending on the MAC protocol of the
network, network-induced delay can be constant, time
varying or random. Under the assumption of a scheduling
MAC protocol, the delays occur while waiting for the
token, or time slot. In this case, it can be said that a
scheduling network is an example of a situation in which
the delay can be bounded and made constant by
transmitting packets periodically [2]. Concerned with small
delays, Ethernet-based networks experience almost no delay
at low network loads [3]. Furthermore, if the controller is
time invariant (such as the one addressed in this paper),
these sources of delays can be added for analysis purposes,
for example, t ¼ tsc þ tca. For simplicity, t is considered
constant and known, a situation that may occur when static
scheduling network protocols are implemented. Moreover,
t is supposed to be less than one sampling period. A buffer
in the controller node is used to store the delayed
information.

System (1) is sampled with a period h . t, yielding the
discrete-time model [20], for k [ Zþ, x(0) ¼ 0, and
u(q) ¼ 0, q [ {�h, 0}

x(khþ h) ¼ As(h)x(kh)þ Bsu0(h, t)u(kh)

þ Bsu1(h, t)u(kh� h)þ Bsww(kh)

y(kh) ¼ Csx(kh)þDsuu(kh)þDsd u(kh� h)

þDsww(kh)

(2)

where w(kh) [ Rr is an extra input, belonging to l2[0, 1),
used to model possible noise in the process. The system
matrices As(h), Bsu0(h, t), Bsu1(h, t), Cs, Dsu and Dsd are
given by

As(h) ¼ exp(Ah), Bsu0(h, t) ¼

ðh�t

0

exp(As) dsB,

Dsd ¼ Dd

Bsu1(h, t) ¼ exp(A(h� t))

ðt
0

exp(As) dsB, Cs ¼ C ,

Dsu ¼ D

(3)

As discussed in [6, 8], the sampling period h may change
its value at runtime for different reasons, for example,
dynamic bandwidth allocation and scheduling decisions. By
considering the sampling period as a time-varying
parameter, it is possible to reduce the flow of information
The Institution of Engineering and Technology 2010
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between sensor and actuator. Nevertheless, bounds on such
variations can be determined, guaranteeing that the actual
values of h at each instant k, namely, hk, lie inside a finite
discrete set as specified below

hk [ {hmin, . . . , hmax}, hk ¼ k � g, k [ N (4)

It is assumed that the real values of hk are not known at
the instant of time k, but only that they belong to (4)
and hmin � t. The number of possible values of these sets
depends on the processor/network clock granularity g,
as discussed in [8]. The clock granularity is related to
processor frequency and k [ N is a function of time that
specifies how many times g the sampling period h will be at
instant k.

In order to guarantee the stability of the networked
system shown in Fig. 1, a state feedback controller is
designed. Using an extra state variable z(kh) ¼ u(kh� h) to
store the last value of the control signal, the dynamics of
system (2) can be represented by the following difference
equations [20]

~x(khþ h) ¼ ~A(h)~x(kh)þ ~Bu(h)u(kh)þ ~Bww(kh)

y(kh) ¼ ~C ~x(kh)þDsuu(kh)þDsww(kh)
(5)

where ~x(kh) ¼ [x(kh)0 z(kh)0]0 and

~A(h) ¼
As(h) Bsu1(h, t)

0 0

� �
, ~Bu(h) ¼

Bsu0(h, t)

I

� �

~Bw ¼
Bsw

0

� �
, ~C ¼ Cs Dsd

� � (6)

In the case where there is no time delay (t ¼ 0), the state
space vector becomes ~x(kh) ¼ x(kh) and the augmented
system matrices simplify in a standard way.

The control signal is given by

u(kh) ¼ Kxx(kh)þ Kd u(kh� h) ¼ Kx Kd

� � x(kh)

z(kh)

� �

¼ K ~x(kh) (7)

A discrete-time polytopic model is used to represent the set
of all possible matrices in system (5) due to the uncertain
time-varying sampling periods hk given by (4). More
specifically, the system matrices ( ~A(h), ~Bu(h)), for any k � 0,
are described as a convex combination of well-defined
vertices ( ~Aj , ~Buj). The main difficulty in defining the vertices
is related to the exponential terms in (3), which need to be
computed for all hk in (4). By using the Cayley–Hamilton
IET Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 50–60
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theorem [21], these terms can be written as

exp(Ah) ¼
Xn�1

i¼0

ri(h)Ai (8)

ðh�t

0

exp(As) ds ¼

ðh�t

0

Xn�1

i¼0

ri(s)A
i

 !
ds

¼
Xn�1

i¼0

ðh�t

0

ri(s) ds

� �
Ai
¼
Xn�1

i¼0

hi(h)Ai

(9)
where

hi(h) ¼

ðh�t

0

ri(s) ds

The coefficients ri(h) and hi(h) can be determined for each
value of hk by solving a set of linear equations defined in
terms of the eigenvalues of matrix A. For instance, the first
block of the matrix ~A(hk) in (6) is given by

exp(Ah) ¼
Xn�1

i¼0

ri(h)Ai
¼
Xn�1

i¼0

ui(hk)Vi (10)

where the coefficients ui(hk), i ¼ 0, . . . , n� 1, are obtained
from the modes associated with the eigenvalues of A and
matrices Vi [ Rn�n are determined by collecting terms in
the above equality. Similarly, Bsu1(hk, t) and Bsu0(hk, t) can
be computed as a linear combination of matrices, following
(3), (8) and (9), and in some cases can be described in terms
of the same parameters ui(hk), i ¼ 0, . . . , n� 1.

Since ri(h), i ¼ 0, . . . , n 2 1, are written as linear
combinations of terms hk exp(lh), where l is an eigenvalue of
matrix A, and hk satisfies (4), the minimum and maximum
values of ui(hk), i ¼ 0, . . . , n� 1, can be determined in such
a way that

ui � ui(hk) � ui, i ¼ 0, . . . , n� 1

All possible outcomes for ~A(hk) and ~Bu(hk) are then given by

~A(a(k)) ¼
XN

j¼1

aj(k) ~Aj , ~Bu(hk) ¼
XN

j¼1

aj(k) ~Buj

with N ¼ 2n and the time-varying vector a(k) lying inside the
unit simplex

U ¼ a [ RN :
XN

i¼1

ai ¼ 1, ai � 0 , i ¼ 1, . . . , N

( )

(11)

for all k � 0. The vertices ( ~Aj , ~Buj) of the polytope are obtained
by all possible combinations of uj and uj in (10).

The uncertain polytopic closed-loop system is then given by

~x(kþ 1) ¼ ~Acl (a(k))~x(k)þ ~Bww(k)

y(k) ¼ ~Ccl ~x(k)þ ~Dww(k)
(12)

with

~Acl (a(k)) ¼ ~A(a(k))þ ~Bu(a(k))K , ~Ccl ¼
~C þ ~DuK (13)

and the uncertain matrices ( ~A(a(k)), ~Bu(a(k))) belong to the
polytope

P W ( ~A(a(k)), ~Bu(a(k))) ¼
XN

j¼1

aj(
~Aj , ~Buj), a [ U

( )

(14)

for all k � 0.

The control problem to be dealt with can be stated as
follows.

Problem 1: Find constant matrices Kx [ Rm�n and
Kd [ Rm�n of the state feedback control (7) such that the
closed-loop system (12) is asymptotically stable and an
upper bound g to the H1 performance is minimised, that is

sup
w=0

kyk22
kwk22

, g2 (15)

with w [ l2[0, 1).

In the literature, an LMI characterisation of such an H1

disturbance attenuation for a precisely known closed-loop
system is given by the discrete-time version of the bounded
real lemma [22], with extensions to uncertain systems [23]
and to the time-varying case [24]. A slightly modified
version, motivated by a quadratic in the state path-dependent
Lyapunov function [17] is presented in the next lemma.

Lemma 1: The closed-loop system (12) is asymptotically
stable with an H1 disturbance attenuation given by g . 0
if there exists a symmetric parameter-dependent matrix
P(a(k), a(kþ 1)) such that [the symbol (w) indicates
symmetric blocks in the LMIs] (see (16))

Proof: Note that the feasibility of (16) assures
P(a(k), a(kþ 1)) . 0. Multiply on the left and on

P(a(kþ 1), a(kþ 2)) ~Acl (a(k))0P(a(k), a(kþ 1)) ~C
0

cl 0
(w) P(a(k), a(kþ 1)) 0 P(a(k), a(kþ 1)) ~Bw

(w) (w) gI ~Dw

(w) (w) (w) gI

2
664

3
775 . 0 (16)
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the right in (16) by diag{P(a(kþ 1), a(kþ 2))�1,
P(a(k), a(kþ 1))�1, I, I} and apply the Schur complement
to obtain (see equation at the bottom of the page)

which is the discrete-time version of the bounded real
lemma for time-varying systems. As a matter of fact, the
above condition can be obtained by defining the Lyapunov
function

v(x(k)) ¼ x(k)0P(a(k), a(kþ 1))�1x(k) (17)

and imposing

Dv(x(k))þ g�1y(k)0y(k)� gw(k)0w(k) , 0

to the dual of system (12). A

Lemma 2: For a given g . 0, if there exist a symmetric
parameter-dependent matrix P(a(k), a(kþ 1)) . 0 and a
parameter-dependent matrix X(a(k), a(kþ 1)) such that
(see (18))

where

B(a(k)) ¼ �I ~Acl (a(k))0 ~C
0

cl

h i

then the closed-loop system (12) is asymptotically stable with
an upper bound g . 0 to the H1 performance.

Proof: Suppose there exist P(a(k), a(kþ 1)) and X(a(k),
a(kþ 1)) such that (18) is verified. Then, multiply (18) by
(B?(a(k)))0 on the left and by B?(a(k)) on the right with

B?(a(k)) ¼

~Acl (a(k))0 ~C
0

cl

I 0
0 I

2
4

3
5, B(a(k))B?(a(k)) ¼ 0

Considering the dual system (i.e. ~Acl ¼
~A
0

cl , ~Bw ¼
~C
0

cl , ~Ccl ¼
~B
0

w and ~Dw ¼
~D
0

w) and applying the Schur complement,
inequality (16) follows in a straightforward way. A

Lemma 2 provides a sufficient condition that assures
robust asymptotic stability with g disturbance attenuation

to the uncertain time-varying closed-loop system (12) in
terms of the existence of a symmetric parameter-dependent
matrix P(a(k), a(kþ 1)) and an extra variable X(a(k), a(kþ
1)) that must verify inequality (18) for a(k) [ U, a(kþ
1) [ U. As has been presented, Lemma 2 cannot be used
to solve Problem 1, since the decision variables do not have
a known structure, the control gains Kx and Kd in the
time-varying closed-loop matrix ~Acl (a(k)) appear in non-
linear terms, and the parameter-dependent condition (18)
must be tested for all a(k) [ U, k � 0.

The main purpose of this paper is to provide finite-
dimensional LMI-based conditions, formulated in terms of
the vertices of the polytope P, to solve Problem 1. For
that, two main facts are exploited:

† The time-varying parameter of the polytopic model a(k) is
allowed to vary arbitrarily fast inside the polytope, that is,
a(kþ 1) [ U is independent of a(k) [ U.

† Lemma 2 provides a sufficient condition for the closed-
loop system asymptomatic stability with g disturbance
attenuation independently of matrix X(a(k), a(kþ 1)),
which represents an important degree of freedom. The
result can be viewed as an extension of Finsler’s lemma
[25]. Several different sufficient conditions could be derived
by imposing particular choices to X(a(k), a(kþ 1)). As an
example, the particular choice

X ¼ F (a(k))0 0 0
� �0

produces a result which is similar to the one in [24, Theorem
1], but with inconvenient products of terms depending on
a(k). To avoid the product of parameter-dependent terms
occurring at the same instant of time, some blocks could be
made constant, zeroed out or constrained to depend only
on a(kþ 1).

By making a(kþ 2) ¼ d(k) [ U, a(kþ 1) ¼ b(k) [ U
and by imposing a special structure to the the extra variable
X(a(k), a(kþ 1)) ¼ X(b(k)) in Lemma 2, BMI conditions
assuring the existence of Kx and Kd that solve Problem 1
are given in the next section.

P(a(k), a(kþ 1))�1
� ~Acl (a(k))P(a(kþ 1), a(kþ 2))�1 ~Acl (a(k))0 � g�1 ~Bw

~B
0

w

(w)

"

~Acl (a(k))P(a(kþ 1), a(kþ 2))�1 ~C
0

cl þ g�1 ~Bw
~D
0

w

gI� ~Ccl P(a(kþ 1), a(kþ 2))�1 ~C
0

cl � g�1 ~Dw
~D
0

w

#
. 0

P(a(kþ 1), a(kþ 2)) 0 0

(w) �P(a(k), a(kþ 1))þ g�1 ~Bw
~B
0

w g�1 ~Bw
~D
0

w

(w) (w) g�1 ~Dw
~D
0

w � gI

2
64

3
75

þX(a(k), a(kþ 1))B(a(k))þB(a(k))0X(a(k), a(kþ 1))0 , 0

(18)
IET Control Theory Appl., 2010, Vol. 4, Iss. 1, pp. 50–60
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3 Main results
Theorem 1 (H1 robust controller): For a given g . 0,
if there exist matrices L [ Rm�(nþm), Hi [ Rq�(nþm),
F , Gi, Pij ¼ P 0ij . 0 [ R(nþm)�(nþm), i ¼ 1, . . . , N and
j ¼ 1, . . . , N , such that (see (19))

then the memory state feedback control gain that solves
Problem 1 is given by

K ¼ Kx Kd

� �
¼ L(F 0)�1 (20)

assuring that the closed-loop system (12) is asymptotically
stable with an upper bound g to the H1 performance.

Proof: Multiplying (19) by ai, bj and dk, summing for
i, j, k ¼ 1, . . . , N , and making L ¼ KF 0, one obtains
(see (21))

which is exactly the parameter-dependent condition (18) of
Lemma 2 with

a(k) ¼ a [ U, a(kþ 1) ¼ b [ U, a(kþ 2) ¼ d [ U,

8k � 0

P(a(k), a(kþ 1)) ¼ P(a, b) ¼
XN

i¼1

XN

j¼1

aibjPij

P(a(kþ 1), a(kþ 2)) ¼ P(b, d) ¼
XN

j¼1

XN

k¼1

bjdkPjk

X(a(k), a(kþ 1)) ¼
XN

k¼1

bj

F
GjF
HjF

2
4

3
5 ¼ F

G(b)F
H (b)F

2
4

3
5

and the closed-loop matrices ~Acl (a) and ~Ccl as in (12).
Finally, the control gain is obtained from the change of
variables L ¼ KF 0, yielding K ¼ L(F 0)�1. A

Corollary 1: The minimum g attainable by the conditions
of Theorem 1 is given by the optimisation problem

ming s:t: (19) (22)

3.1 Remarks and extensions

The first important remark is that by fixing G ¼ H ¼ 0, the
conditions of Theorem 1 reduce to LMIs. Consequently,
Corollary 1 in this case is a convex optimisation problem
that can be efficiently handled by semidefinite programming
algorithms, for instance, SeDuMi [26]. Although several
methods could be applied in the solution of the BMI
problem (22), the following algorithm is suggested. Fix the
variables Hi ¼ 0 and Gi ¼ 0 and minimise g with respect to
F, L and Pij. Then, fix the variables F, L and Pij, minimise
g with respect to Hi and Gi, and obtain the new values of Hi

and Gi. Repeat this procedure until no significant changes in
the value of g occur. This algorithm is sometimes called the
alternating semidefinite programming method and consists
of fixing some variables and solving for others in such a way
that at each step one has a convex optimisation problem.
Despite the fact that there is no guarantee of convergence to
a local minimum in a general BMI setting, these methods
are easy to implement and provide good results in many
cases, as illustrated by the examples presented in Section 4.

It is important to emphasise at this point that the BMI
conditions are used to improve the quality of the H1

attenuation level g, that is, to make it tighter. At each step
of the proposed algorithm, a convex optimisation problem
with LMI constraints is solved. More specifically, in the
first step of this algorithm the matrices G(�) and H (�) are

Pjk � F � F 0 F ~A
0

i þ L0 ~B
0

ui � F 0G0j F ~C
0
þ L0 ~Du � F 0H 0j 0

(w) GjF
~A
0

i þ
~AiF
0G0j þ GjL

0 ~B
0

ui þ
~BuiLG0j � Pij GjF

~C
0
þ GjL

0 ~D
0

u þ
~AiF
0H 0j þ ~BuiLH 0j ~Bw

(w) (w) HjF
~C
0
þ ~CF 0H 0j þHjL

0 ~D
0

u þ
~DuLH 0j � gI ~Dw

(w) (w) (w) �gI

2
66664

3
77775 , 0

i ¼ 1, . . . , N , j ¼ 1, . . . , N , k ¼ 1, . . . , N

(19)

P(b, d)� F � F 0 F ( ~A(a)þ ~Bu(a)K )0 � F 0G(b)0

(w) G(b)F ( ~A(a)þ ~Bu(a)K )0 þ ( ~A(a)þ ~Bu(a)K )F 0G(b)0 � P(a, b)

(w) (w)

(w) (w)

2
6664

F ( ~C þ ~DuK )0 � F 0H (b)0 0

G(b)F ( ~C þ ~DuK )0 þ ( ~A(a)þ ~Bu(a)K )F 0H (b)0 ~Bw

H (b)F ( ~C þ ~DuK )0 þ ( ~C þ ~DuK )F 0H (b)0 � gI ~Dw

(w) �gI

3
7775 , 0 (21)
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set to zero and the initial solution is obtained from a convex
LMI optimisation problem (Corollary 1). The start of the
algorithm with zeroed matrices turns out to be a good
option since it reproduces the convex controller design
conditions that appeared in the literature for discrete-time
systems with time varying parameters [18]. Other choices
for initial values G(�) and H (�), although possible, do not
have a correspondence with existing conditions. Moreover,
by fixing some variables while searching for others, one is
always solving LMI problems that assure non-increasing
values of g. As can be seen from the numerical examples,
the algorithm provides very good results.

The fact that the conditions of Theorem 1 need to be satisfied
by constant matrices L and F guarantees the existence of a
robust state feedback gain K ¼ L(F 0)�1. Other choices could
be used, resulting in different structures for X(a(k), a(kþ 1))
that would, in general, lead to parameter-dependent feedback
gains. In particular, the choices made in Theorem 1 assure
that the extra variable X(a(k), a(kþ 1)) depends only on
a(kþ 1), in other words, that all the products between the
uncertain time-varying matrix ~A(a(k)) and G(�), H (�) in
Lemma 2 occur at different instants of time. Products of
time-varying matrices at the same instant of time a(k) in
Lemma 2 would require more involved manipulations, such
as, for instance, the ones proposed in [27].

A state feedback controller has been chosen to illustrate the
potentialities of the proposed approach. Sufficient conditions
for decentralised or output feedback control could be obtained
by imposing block diagonal structures to the matrices L and F
in Theorem 1, following the lines depicted in [28, 29].

The results of Lemma 2 and Theorem 1 could be improved
by considering a larger path in the Lyapunov function (17) of
Lemma 2, that is, P(a(k), . . . , a(kþ L)). Larger paths (not
necessarily of the same size) and other structures could also be
used in the extra matrix X(�) of Lemma 2. At the expense of
a larger computational effort, lower values for g can be
obtained. Note that the LMI conditions for a path of size
Lþ 1 provide at least the same values of g obtained with L.

On the other hand, simpler design conditions based on a
Lyapunov matrix P(a(k)) can be obtained as a particular
case of Theorem 1. This preliminary result, stated in the
next corollary, appears in [15].

Corollary 2: A sufficient condition for the existence of a
memory state feedback control gain that solves Problem 1
is obtained by solving Theorem 1 with matrices Pij ¼ Pi

and Pjk ¼ Pj , that is

P(a(k)) ¼
XN

i¼1

aiPi; P(a(kþ 1)) ¼
XN

j¼1

bjPj; a;b [ U

Finally, it is important to emphasise that using the
Cayley–Hamilton theorem to deal with the matrix
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exponential in (3) provides a systematic way to obtain the
vertices of polytope (14). It is also helpful when bounded
rates of variation are involved, since in this case an explicit
expression for the variation rate may be obtained.
Additionally, the use of a polytope to model the time-
varying parameter hk represents an interesting strategy for
solving Problem 1. First, it does not require a knowledge of
the processor/network clock granularity g, since the only
information used to derive the polytopic model is the
extreme values of sets (4). Second, the time-varying
uncertainties, introduced during the sampling stage, can be
completely modelled by a polytope of the form (14). Once
one has defined the vertices of the closed-loop polytope,
there will exist a vector a(k) such that (14) holds for each
instant of time k � 0. The only condition on vector a(k) is
that it belongs to the unit simplex U for all k � 0.
Furthermore, the number of values in the set (4) does not
influence the computational burden; in other words, a larger
number of hk does not imply a greater computational effort,
which allows clock granularity to be as small as possible.

3.2 More complex NCS scenarios

The controller design method addressed here is mainly
concerned with a time-varying sampling period motivated
by applications to reduce bandwidth usage. As pointed out
in [6], the bandwidth may be reduced by controlling the
values that hk assumes as time evolves in order to reduce
the flow of information between the sensor and the
controller/actuator. Since robust control is at issue, the
sampling period is considered to be uncertain and Lyapunov
theory is used for the purpose of synthesis. Although the
proposed approach simplifies, or even neglects, some aspects
of the NCS (the assumptions here being constant time
delay, no packet dropouts, single-packet transmission and
infinite sensor precision), some ideas are proposed on how
to deal with more complex scenarios.

When the time delay is considered constant and longer
than h, system (5) has to be slightly modified and more
state variables are used to describe the delay, as proposed in
[20]. In this case, the matrices in (6) become

~A(h) ¼

As(h) Bsu1(h, t) 0 . . . 0

0 0 I . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . I

0 0 0 . . . 0

2
6666664

3
7777775

,

~Bu(h) ¼

Bsu0(h, t)

0

..

.

0

I

2
6666664

3
7777775

, ~Bw(h) ¼

Bsw(h, t)

0

..

.

0

0

2
6666664

3
7777775

,

~C ¼ Cs Dsd 0 . . . 0
� �
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Assuming an event-driven controller and actuator,
Theorem 1 could be applied when the delay is time varying
within an interval, but in this case the information on the
bounds of tk is used to derive the vertices of the polytope –
in this case, hi(�) in (8) would be a function of both hk and
tk. Whenever possible, the use of a memory controller
through the simplified analysis presented here is suggested,
but the method could be adapted to use more complex
Lyapunov functions, such as Lyapunov–Krasovskii
functionals.

Data packet dropout and multiple-packet transmission in
NCS can be modelled as an asynchronous dynamical
system (ADS) with rate constraints on events [2]. A
simplified ADS with rate constraints can be written as a set
of difference equations, as proposed in [2]

x(kþ 1) ¼ fs (x(k)), s ¼ 1, 2, . . . , N (23)

where each discrete state fs (�) occurs in a fraction of time
rs,
PN

s¼1 rs ¼ 1. The stability of such a class of systems is
studied in [30], as reproduced in the following lemma.

Lemma 3 ([30]): Given an ADS as (23), if there exist a
Lyapunov function V (x(k)) : Rn

! Rþ and scalars j1,
j2, . . . , jN corresponding to each rate such that

j
r1
1 j

r2
2 � � � j

rN
N . j . 1 (24)

V (x(kþ 1))� V (x(k)) � (j�2
s � 1)V (x(k)),

s ¼ 1, 2, . . . , N (25)

then the ADS remains exponentially stable, with a decay rate
greater than j.

By using Lemma 3, Theorem 1 can be extended to deal
with packet dropout and multiple-packet transmission. The
NCS is modelled by a set of difference equations activated
by a switch that closes at a certain rate r. The packet
dropout effect, or the multiple-packet transmission, is then
represented by an augmented system, as done in [2], and
Lemma 3 is applied in the study of stability.

Finally, concerning the infinite sensor precision, the effect
of quantisers can be modelled by using the sector bound
approach. This strategy treats the quantisation error as a
non-linearity that lies inside a sector bound. It is a simple
and classic approach to study quantisation effects and is
closely related to absolute stability theory [31]. The
approaches discussed in [32] could be explored in this
direction.

It is worth mentioning that the extensions proposed in this
section may be involved or introduce some conservatism in
the results. The aim here is to point out that Theorem 1 is
not restricted to a simplified framework and may be
adapted to deal with different situations. These topics are
under investigation by the authors.
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4 Numerical experiments
Example 1: The aim here is to illustrate the potentialities of
the proposed method and to show in detail the steps based on
the Cayley–Hamilton theorem to obtain the vertices of the
polytopic model.

This example, borrowed from [21], is a simplified model of
an armature voltage-controlled DC servo motor consisting of
a stationary field and a rotating armature and load. All effects
of the field are neglected. The aim is to design H1 robust
memory control of the speed of the shaft. All information
is sent through a communication network. The behaviour
of the DC servo motor shown in Fig. 2 can be described
by the differential equations

€w

€ra

� �
¼

�
b

J

KT

J

�
Kw

La

�
Ra

La

2
664

3
775 _w

_ra

� �
þ

0
1

L

" #
ea(t) (26)

where ea is the externally applied armature voltage, ra is the
armature current, Ra is the resistance of the armature
winding, La is the armature winding inductance, em is the
back electromotive force (emf) voltage induced by
the rotating armature winding (em ¼ Kw _w, Kw . 0), b is
the viscous damping due to bearing friction, J is the
moment of inertia of the armature and load, and w is the
shaft position. The torque generated by the motor is given
by T ¼ KT ia and J ¼ 0:01 kgm2=s2, b ¼ 0:1 Nms, KT ¼

Kw ¼ 0:01 Nm=Amp, Ra ¼ 1V, and La ¼ 0:5 H.

System (26) was also studied in [8], assuming zero delay,
time-varying sampling rates in the sensor and no index of
performance. Although this system is already stable,
Corollary 1 was applied in order to provide a gain matrix
that guarantees robustness against unmodelled l2[0, 1)
perturbations by minimising the H1 index of performance
of the closed-loop system. Furthermore, a non-zero delay is
considered, t ¼ 0:5 ms, and the sampling rate is allowed to
vary within the interval hk [ [0:001 0:099].

Figure 2 DC servo motor as presented in [21]
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Closing the loop with (7), one can express system (26) by
the polytope (14) with four vertices (N ¼ 4) obtained
through the Cayley–Hamilton theorem as follows. First, to
compute As(h) ¼ exp(Ah), obtain r0(h) and r1(h) by solving
the linear system

1 �9:9975
1 �2:0025

� �
r0(h)
r1(h)

� �
¼

u1(h)
u2(h)

� �

u1(h) ¼ exp(�9:9975h), u2(h) ¼ exp(�2:0025h)

Then, express exp(Ah) as

exp(Ah) ¼ r0(h)Iþ r1(h)A ¼
1:0003 �0:1251

0:0025 �0:0003

� �
u1(h)

þ
�0:0003 0:1251

�0:0025 1:0003

� �
u2(h)

By evaluating u1(h) and u2(h) at the extreme values of h, one
has

0:3717 � u1(h) � 0:9901, 0:8202 � u2(h) � 0:9980

and the polytopic model with N ¼ 4 vertices (obtained by
collecting terms) is given by

exp(Ah)¼a1

0:3715 0:0561

�0:0011 0:8203

� �
þa2

0:9901 �0:0212

0:0004 0:8201

� �

þa3

0:3715 0:0783

�0:0016 0:9982

� �
þa4

0:9900 0:0010

�0:0000 0:9980

� �

Similarly, to compute Bsu0(h, t), use Cayley–Hamilton to
obtain h0(h) and h1(h) such that

ðh�t

0

exp(As) ds ¼ h0(h)Iþ h1(h)A

by solving the linear system

h0(h)
h1(h)

� �
¼

0:0252 �0:6251
0:0126 �0:0625

� �
u1(h)
u2(h)

� �
�
�0:5994
�0:0500

� �

Then, using the extreme values for u1(h) and u2(h) above and
collecting terms, one obtains

Bsu0(h, t) ¼

ðh�t

0

exp(As) dsB

¼ a1

0:0067

0:1788

� �
þ a2

0:0222

0:1788

� �

þ a3

�0:0155

0:0010

� �
þ a4

0

0:0010

� �
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Matrix Bsu1(h, t) can be evaluated from exp(Ah) since

Bsu1(h, t) ¼ exp(Ah)(exp(�At)

ðt
0

exp(As) dsB)

yielding (from similar steps) the vertices

Bsu11
¼

0:0001

0:0008

� �
, Bsu12

¼
0

0:0008

� �

Bsu13
¼

0:0001

0:0010

� �
, Bsu14

¼
0

0:0010

� �

The polytopic model for ~A(a) is then given by

~A1 ¼

0:3715 0:0561 0:0001

�0:0011 0:8203 0:0008

0 0 0

2
64

3
75

~A2 ¼

0:9901 �0:0212 0

0:0004 0:8201 0:0008

0 0 0

2
664

3
775

~A3 ¼

0:3715 0:0783 0:0001

�0:0016 0:9982 0:0010

0 0 0

2
664

3
775

~A4 ¼

0:9900 0:0010 0

0 0:9980 0:0010

0 0 0

2
664

3
775

System (26) is then rewritten as in (5) with matrices
Dsw ¼ [1], B0sw ¼ [0:1 0] and Dsd ¼ [0].

Corollaries 1 and 2 are solved by using alternating
semidefinite programming. Each iteration consists of two
steps. First, the problem is solved with G(�) ¼ 0 and
H (�) ¼ 0 (in this case, the problem is convex) and, second,
G(�) and H (�) are explored in the search for a better H1

upper bound g. The results after five iterations are shown
in Table 1.

Sufficient conditions for the existence of a decentralised or
a static output feedback control gain can be obtained from
Theorem 1 by simply imposing to matrices L and F in (20)
a fixed structure, following the lines in [28, 29]. For
instance, suppose that the first state variable is not available

Table 1 H1 robust memory controller for Example 1

Method H1 Upper
bound g

Gain matrix K

Corollary 1 10.87 [21.8822 2 9.6684 2 0.0117]

Corollary 2 10.90 [21.5670 2 9.8076 2 0.0150]
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for feedback. By imposing

L ¼ 0 ‘2 ‘3

� �
, F ¼

f11 0 0
0 f22 f23

0 f32 f33

2
4

3
5

to matrices L and F in Theorem 1 the following result is
obtained (after five iterations)

K ¼ 0 0:8002 �7:5613� 10�6
� �

, g ¼ 11:09

Example 2: This example is intended to point out the
quality of the proposed method when no communication
channel is considered. Consider an uncertain time-varying
discrete-time system with vertices given by

~A1 ¼
0:28 �0:315

0:63 �0:84

� �
, ~A2 ¼

0:52 0:77

�0:7 �0:07

� �
,

~Bu1 ¼
1

2

� �
, ~Bu2 ¼

9

21

� �

~Bw ¼
1

0

� �
, ~C ¼ 1 1

� �
, ~Dw ¼

~Du ¼ 0
� �

This system is also studied in [19] but for a simpler case,
where the parameters of matrix ~Bu are time invariant. Here,
the results from Theorem 1 are compared to [33 Remark
2]. In order to illustrate the efficiency of the proposed
method due to the use of a path-dependent Lyapunov
function, Corollary 1 is contrasted with Corollary 2. The
results can be seen in Table 2.

5 Conclusion
This paper addressed the H1 robust controller for NCSs
with uncertain time-varying sampling rates. A new state
space variable, representing the buffer of the controller, was
added to model a time-delay in the control signal. A
polytope with vertices determined by the Cayley–Hamilton

Table 2 H1 robust memory controller for Example 2

Method Iteration g Improvement,
%

Time
(s)

[33] – 67.33 – 0.09

Corollary 1 1 31.37 53.40 0.17

Corollary 1 2 23.10 65.69 0.33

..

. ..
. ..

. ..
.

Corollary 1 10 19.21 71.47 1.55

Corollary 2 1 30.39 54.87 0.20

Corollary 2 2 17.10 74.61 0.39

..

. ..
. ..

. ..
.

Corollary 2 10 11.25 83.29 1.72
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theorem was used to model the system. Using an approach
based on path-dependent Lyapunov functions, theoretical
conditions were formulated for the existence of a state
feedback control assuring an H1 attenuation level for the
closed-loop system. Then, sufficient conditions for the
existence of the memory controller are derived in terms of
BMIs described only at the vertices of the polytope. An
algorithm exploiting appropriate choices of the extra
variables is used to solve the problem through a sequence
of convex optimisation procedures, providing lower levels
for the H1 performance of the closed-loop system. When
no communication channel is considered, the proposed
conditions can also provide better results when compared
to other methods in the literature dealing with time-
varying discrete-time systems. Some remarks on possible
extensions to more complex NCS scenarios were presented
and numerical experiments were provided to illustrate
different aspects of the proposed approach.
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